


免费预览已结束,剩余17页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
直线与平面平行,一、复习回顾:,1、直线和平面有哪几种位置关系?,平行、相交、在平面内,2、反映直线和平面三种位置关系的依据是什么?,公共点的个数,没有公共点:平行仅有一个公共点:相交无数个公共点:在平面内,如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.,3、直线和平面平行的判定定理,线面平行的判定定理解决了线面平行的条件;反之,在直线与平面平行的条件下,会得到什么结论?,直线和平面平行的性质,二、问题引领:,三、合作交流,1、若直线平面,则直线与平面的直线的位置关系有哪几种可能?,2、若直线平面,则在平面内与平行的直线有多少条?这些与平行的直线的位置关系如何?,3、若直线平面,过直线作平面使它与平面相交,设=m,则与m的位置关系如何?为什么?,4、试用文字语言将上述原理表述成一个命题.,线面平行的性质定理,一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。,(1)设a、b为直线,为平面,若ab,且b在内,则a.,(),四、巩固练习,(2)若直线平面,则与平面内的任意直线都不相交.,(3)设a、b为异面直线,过直线a且与直线b平行的平面有且只有一个.,(),(),1.如果一条直线和一个平面平行,则这条直线()A只和这个平面内一条直线平行;B只和这个平面内两条相交直线不相交;C和这个平面内的任意直线都平行;D和这个平面内的任意直线都不相交。,D,二、选择题:,2.直线a平面,平面内有n条互相平行的直线,那么这n条直线和直线a()(A)全平行;(B)全异面;(C)全平行或全异面;(D)不全平行或不全异面。3.直线a平面,平面内有n条交于一点的直线,那么这n条直线和直线a平行的()(A)至少有一条;(B)至多有一条;(C)有且只有一条;(D)不可能有。,C,B,4.如果一条直线和一个平面平行,夹在直线和平面间的两线段相等,那么这两条线段所在直线的位置关系是()A.平行B.相交C.异面D.不确定答案:D,5.下面给出四个命题,其中正确命题的个数是()若a,b,则ab若a,b,则ab若ab,b,则a若ab,b,则aA.0B.1C.2D.4答案:A,题型探究重点难点个个击破,类型一线面平行的性质及应用,例1如图,用平行于四面体ABCD的一组对棱AB,CD的平面截此四面体,求证:截面MNPQ是平行四边形.,证明因为AB平面MNPQ,平面ABC平面MNPQMN,且AB平面ABC,所以由线面平行的性质定理,知ABMN.同理ABPQ,所以MNPQ.同理可得MQNP.所以截面四边形MNPQ是平行四边形.,反思与感悟,解析答案,反思与感悟,利用线面平行的性质定理解题的步骤(1)确定(或寻找)一条直线平行于一个平面.(2)确定(或寻找)过这条直线且与这个平行平面相交的平面.(3)确定交线.(4)由性质定理得出结论.,类型二线面平行的性质与判定的综合应用,例2已知,a,且a,l,求证:al.,证明如图,过a作平面交于b.因为a,所以ab.过a作平面交平面于c.因为a,所以ac,所以bc.又b且c,所以b.又平面过b交于l,所以bl.因为ab,所以al.,解析答案,反思与感悟,判定定理与性质定理常常交替使用,即先通过线线平行推出线面平行,再通过线面平行推出线线平行,复杂的题目还可以继续推下去,我们可称它为平行链,如下:线线平行线面平行线线平行.,在平面内作或找一直线,经过直线作或找平面与平面的交线,在四棱锥P-ABCD中,底面ABCD是平行四边形,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:APGH.,参考答案与解析:,随堂练习1:,证明:如图所示,连结AC,BD交于O,连结MO.四边形ABCD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 品牌与价格关联性-洞察及研究
- 部队交通安全培训内容课件
- 河南省南阳市镇平县2024-2025学年八年级下学期3月月考生物学试题(含答案)
- 20xx建设承诺书4篇
- 【2025年秋七上语文阶段测试】第3单元学业质量评价01(解析版)
- 山东省2025年普通高校招生网上报名信息表
- 车险销售原理课件
- 基于区块链的分离式墨盒供应链溯源系统构建瓶颈
- 城市更新浪潮中商务综合体功能迭代与社区服务融合的设施适配性
- 国际奢侈品赛道中东方纹样溢价权争夺的定价权困局
- 社区街道网格员安全培训
- 反诈知识竞赛题库及答案(共286题)
- 村卫生室医疗废物管理制度
- GB/T 44698-2024电动踝关节
- 生理学基础题库(46道)
- 月度财务分析报告(3篇)
- 华文版六年级上册书法教案
- 物流消防应急预案
- (人教版2024)八年级语文上册全册各课导学案(含答案)
- 2024-2030年中国汽车焊装设备行业竞争格局及未来前景预测报告
- 城镇污泥标准检验方法CJT221-2023 知识培训
评论
0/150
提交评论