9.13提取公因式法_第1页
9.13提取公因式法_第2页
9.13提取公因式法_第3页
9.13提取公因式法_第4页
9.13提取公因式法_第5页
已阅读5页,还剩123页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

6、如图,直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边AOB,点C为x正半轴上一动点(OC1),连结BC,以线段BC为边在第四象限内作等边CBD,直线DA交y轴于点E.(1)OBC与ABD全等吗?判断并证明你的结论;,(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由.,7、某工厂用一种自动控制加工机制作一批工件,该机器运行过程分为加油过程和加工过程:加工过程中,当油箱中油量为10升时,机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复已知机器需运行185分钟才能将这批工件加工完下图是油箱中油量y(升)与机器运行时间x(分)之间的函数图象根据图象回答下列问题:(1)求在第一个加工过程中,油箱中油量y(升)与机器运行时间x(分)之间的函数关系式(不必写出自变量x的取值范围);(2)机器运行多少分钟时,第一个加工过程停止?(3)加工完这批工件,机器耗油多少升?,1某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图(1)第20天的总用水量为多少米?(2)求y与x之间的函数关系式(3)种植时间为多少天时,总用水量达到7000米3?,注意点:,(1)从函数图象中获取信息,(2)根据信息求函数解析式,从一次函数图象中获取信息问题,3.三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km.如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()A.1B.2C.3D.4,甲队到达小镇用了6小时,途中停顿了1小时,甲队比乙队早出发2小时,但他们同时到达,乙队出发2.5小时后追上甲队,乙队到达小镇用了4小时,平均速度是6km/h,4.5,4.5,D,2“512”汶川地震发生后,某天广安先后有两批自愿者救援队分别乘客车和出租车沿相同路线从广安赶往重灾区平武救援,下图表示其行驶过程中路程随时间的变化图象(1)根据图象,请分别写出客车和出租车行驶过程中路程与时间之间的函数关系式(不写出自变量的取值范围);(2)写出客车和出租车行驶的速度分别是多少?(3)试求出出租车出发后多长时间赶上客车?,1.如图,在边长为的正方形ABCD的一边BC上,有一点P从点B运动到点C,设BP=X,四边形APCD的面积为y。(1)写出y与x之间的关系式,并画出它的图象。(2)当x为何值时,四边形APCD的面积等于3/2。,A,B,C,D,P,2如图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止设点P运动的路程为x,ABP的面积为y,如果y关于x的函数图象如图2所示,(1)求ABC的面积;(2)求y关于x的函数解析式;,BC=4,AB=5,10,(2)y=2.5x(0x4),y=10(4x9),13,y=-2.5x+32.5(9x13),(3)当ABP的面积为5时,求x的值,X=2,X=11,1用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()ABCD.,D,2如图,已知函数y=x+b和y=ax+3的图象交于P点,则x+bax+3不等式的解集为,X1,1.如图,直线AB与y轴,x轴交点分别为A(0,2)B(4,0),问题1:求直线AB的解析式及AOB的面积.,问题2:当x满足什么条件时,y0,y0,y0,0y2,当x4时,y0,当x=4时,y=0,当x4时,y0,当0x4时,0y2,问题3:在x轴上是否存在一点P,使?若存在,请求出P点坐标,若不存在,请说明理由.,1,7,P,P,P(1,0)或(7,0),问题4:若直线AB上有一点C,且点C的横坐标为0.4,求C的坐标及AOC的面积.,0.4,C,问题5:若直线AB上有一点D,且点D的纵坐标为1.6,求D的坐标及直线OD的函数解析式.,1.6,D,C点的坐标(0.4,1.8),D点的坐标(0.8,1.6),y=2x,问题6:求直线AB上是否存在一点E,使点E到x轴的距离等于1.5,若存在求出点E的坐标,若不存在,请说明理由.,E,E,1.5,1.5,问题7:求直线AB上是否存在一点F,使点E到y轴的距离等0.6,若存在求出点F的坐标,若不存在,请说明理由.,E点的坐标(1,1.5)或(7,-1.5),F点的坐标(0.6,1.7)或(-0.6,2.3),A,2,O,4,B,x,y,问题8:在直线上是否存在一点G,使?若存在,请求出G点坐标,若不存在,请说明理由.,G(2,1)或(6,-1),G,G,问题9:在x轴上是否存在一点H,使?若存在,请求出H点坐标,若不存在,请说明理由.,H(1,1.5)或(-1,2.5),问题10:已知x点A(-4,0),B(2,0),若点C在一次函数的图象上,且ABC是直角三角形,则满足条件点C有()A.1个B.2个C.3个D.4个,C,C,C,C,问题11:如图,直线AB与y轴,x轴交点分别为A(0,2)B(4,0),以坐标轴上有一点C,使ACB为等腰三角形这样的点C有()个A.5个B.6个C.7个D.8个,A,2,O,4,B,x,y,D,1、某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师,现有甲、乙两种大客车,它们的载客量和租金如下表:,(1),(1)共需租多少辆汽车?,(2)给出最节省费用的租车方案?,要求:(1)要保证240名师生有车坐。(2)要使每辆车至少要有1名教师。,解:(1)共需租6辆汽车.,(2)设租用x辆甲种客车.租车费用为y元,由题意得y=400 x+280(6-x),化简得y=120 x+1680,x是整数,x取4,5,k=120O,y随x的增大而增大,当x=4时,Y的最小值=2160元,2(9分)5月12日,我国四川省汶川县等地发生强烈地震,在抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要25台,乙地需要23台;A、B两省获知情况后慷慨相助,分别捐赠该型号挖掘机26台和22台并将其全部调往灾区如果从A省调运一台挖掘机到甲地要耗资0.4万元,到乙地要耗资0.3万元;从B省调运一台挖掘机到甲地要耗资0.5万元,到乙地要耗资0.2万元设从A省调往甲地台挖掘机,A、B两省将捐赠的挖掘机全部调往灾区共耗资y万元请直接写出y与x之间的函数关系式及自变量x的取值范围;,调入地,调出地,A(26台),B(22台),甲(25台),乙(23台),x,25-x,26-x,X-3,0.4,0.5(),0.3(),0.2(),Y=0.4x+0.5(25-x)+0.3(26-x)+0.2(X-3),Y=-0.2x+19.7,(3x25),若要使总耗资不超过15万元,有哪几种调运方案?,Y=-0.2x+19.7,(3x25),-0.2x+19.715,X23.5,x是整数.x取24,25,即,要使总耗资不超过15万元,有如下两种调运方案:方案一:从A省往甲地调运24台,往乙地调运2台;从B省往甲地调运1台,往乙地调运21台方案二:从A省往甲地调运25台,往乙地调运1台;从B省往甲地调运0台,往乙地调运22台,怎样设计调运方案能使总耗资最少?最少耗资是多少万元?,1.已知一次函数y=kx+b的图象经过(-1,-5),且与正比例函数y=X的图象相交于点(2,a),求:(1)a的值;(2)一次函数的解析式;(3)这两个函数图象与x轴所围成的三角形面积.,2.如图,A,B分别是x轴上位于原点左,右两侧的点,点P(2,P)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,(1)求的面积;(2)求点A的坐标及P的值;(3)若,求直线BD的函数解析式.,3.直线分别交x轴,y轴于A,B两点,O为原点.(1)求AOB的面积;(2)过AOB的顶点,能不能画出直线把AOB分成面积相等的两部分?写出这样的直线所对应的函数解析式,1三角形的概念,三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角,简称角;相邻两边的公共端点是三角形的顶点,三角形ABC用符号表示为ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示.,不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形,1三角形的概念,不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形,注意:1:三条线段要不在同一直线上,且首尾顺次相接;2:三角形是一个封闭的图形;3:ABC是三角形ABC的符号标记,单独的没有意义,2三角形的三边关系,注意:1:三边关系的依据是:两点之间线段是短2:判断三条线段能否构成三角形的方法:只要满足较小的两条线段之和大于第三条线段,便可构成三角形;若不满足,则不能构成三角形.3:三角形第三边的取值范围是:两边之差1),C,C,考点二:三角形三边关系,例3ABC的三边长分别为4、9、x,求x的取值范围;求ABC周长的取值范围;当x为偶数时,求x;当ABC的周长为偶数时,求x;若ABC为等腰三角形,求x,考点三:三角形的三线,例4:下列说法错误的是()A:三角形的三条中线都在三角形内。B:直角三角形的高线只有一条。C:三角形的三条角平分线都在三角形内。D:钝角三角形内只有一条高线。,例5:在三条边都不相等的三角形中,同一条边上的中线,高和这边所对角的角平分线,最短的是()A:中线。B:高线。C:角平分线。D:不能确定。,B,B,6有关“命题”的概念,注意:命题有真命题和假命题两种,,用来判断它是真(正确)、假(错误)的语句或式子叫做命题。,命题由题设和结论两部分组成的.前一部分,也称之为条件,后一部分称之为结论。,命题通常是用“如果,那么.”的形式给出.,“如果p,那么q.”中的题设与结论互换,得一个新命题:“如果q,那么p.”这两个命题称为互逆命题.其中一个命题叫原命题,另一个命题叫做逆命题.,当一个命题是真命题时它的逆命题不一定是真命题.,符合命题的题设,但不满足命题的结论的例子,称之为反例.要说明一个命题是假命题,只要举一个反例即可.,7有关“公理、定理、证明、推论、演绎推理、辅助线”等概念,(2)定理:从公理或其他真命题出发,用推理方法证明为正确的,并被选作判断命题真假的依据的真命题,(1)公理:从长期实践中总结出来的,不需要再作证明的真命题。,(4)演绎推理:从已知条件出发,依据定义、公理、定理,并按照逻辑规则,推导出结论的方法。,(5)证明:演绎推理的过程就是演绎证明,简称“证明”。,(3)推论:由公理、定理直接得出的真命题。,(6)辅助线:为了证明的需要,在原来的图形上添画的线段或直线。,8三角形的内角和定理:三角形的内角和等于180,(2)从剪拼可以看出:A+B+C=180,(1)从折叠可以看出:A+B+C=180,(3)由推理证明可知:A+B+C=180,证明三角形内角和定理的方法,添加辅助线思路:1、构造平角,2,1,E,D,1,2,E,D,F,1,2,添加辅助线思路:2、构造同旁内角,E,(,E,D,F,(,(,1,2,3,4,(,9三角形的外角,三角形的外角的定义:三角形一边与另一边的延长线组成的角,叫做三角形的外角.,三角形的外角与内角的关系:,2:三角形的一个外角等于它不相邻的两个内角的和;,1:三角形的一个外角与它相邻的内角互补;,3:三角形的一个外角大于任何一个与它不相邻的内角。,4:三角形的外角和为360。,考点四:三角形内角和定理:,解:设B=x,则A=3x,C=4x,从而:x+3x+4x=180,解得x=22.5即:B=22.5,A=67.5,C=90,例3ABC中,B=A=C,求ABC的三个内角度数.,例4如图,点O是ABC内一点,A=80,1=15,2=40,则BOC等于()A.95B.120C.135D.650,分析与解:O=180-(OBC+OCB)=180-(180-(1+2+A)=1+2+A=135,考点四:三角形内角和定理:,1.在ABC中,三边长a,b,c都是整数,且满足abc,a=8,那么满足条件的三角形共有多少个?,变式:1.已知小明家距离学校10千米,而小蓉家距离小明家3千米.如果小蓉家到学校的距离是d千米,则d满足?,2.如图,在ABC中,BAC=4ABC=4C,BDAC于点D,求ABD的度数。,答案ABD=30,变式2.用三条绳子打结成三角形(不考虑结头长),已知其中两条长分别是3米和7米,问这个等腰三角形的周长是多少?,3.如图,草原上有四口油井,位于四边形ABCD的四个顶点上,现在要建立一个维修站H,试问H建在何处,才能使它到四口油井的距离之和HA+HB+HC+HD最小,说明理由.,4.如图,ACBD,AE平分BAC交BD于点E,若1=64,则2=.,5.如图所示的正方形网格中,网格线的交点称为格点已知A、B是两格点,如果C也是图中的格点,且使得ABC为等腰三角形,则点C的个数是(),A6B7C8D9,6.已知:如图,ABCD,直线EF分别交AB、CD于点E、F,BEF的平分线与DFE的平分线相交于点P求证:P=90,8.如图1,求证:BOC=A+B+C,如图2,ABC=100,DEF=130,求A+C+D+F的度数,7.求证:三角形内角之和等180,10.已知如图所示,在ABC中,DE/BC,F是AB上的一点,FE的延长线交BC的延长线于点G,求证EGHADE.,9.如图,已知,直线ABCD,证明:A+C=AEC.,例2、如图,已知AD是ABD和ACD的公共边.,证法:延长ADBDE=B+3CDEC+4(三角形的任意一个外角等于与它不相邻的两内角之和)BDC=BDE+CDEB+C+3+4.又BAC3+4,BDCB+C+BAC,E,证明:BDC=BAC+B+C,附加:证明:等腰三角形两底角的平分线相等。已知:如图,在ABC中AB=AC,BD,CE是ABC的角平分线。求证:BD=CE.,第13章全等三角形,知识梳理:,1:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?,2:全等三角形有哪些性质?,3:三角形全等的判定方法有哪些?,能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。,(1):全等三角形的对应边相等、对应角相等。(2):全等三角形的周长相等、面积相等。(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。,SSS、SAS、ASA、AAS、HL(RT),方法指引,证明两个三角形全等的基本思路:,(1):已知两边-,找第三边,(SSS),找夹角,(SAS),(2):已知一边一角-,已知一边和它的邻角,找是否有直角,(HL),已知一边和它的对角,找这边的另一个邻角(ASA),找这个角的另一个边(SAS),找这边的对角(AAS),找一角(AAS),已知角是直角,找一边(HL),(3):已知两角-,找两角的夹边(ASA),找夹边外的任意边(AAS),练习,例1:已知AC=FE,BC=DE,点A,D,B,F在一条直线上,AD=BF,求证:E=C,证明:,AD=FB,AD+DB=BF+DB,即AB=FD,在ABC和FDE中,AC=FEBC=DEAB=FD,ABCFDE,(SSS),E=C,练习1:如图,AB=AD,CB=CD.求证:AC平分BAD,例2:如图,AC和BD相交于点O,OA=OC,OB=OD求证:DCAB,练习2:已知,ABC和ECD都是等边三角形,且点B,C,D在一条直线上求证:BE=AD,变式:以上条件不变,将ABC绕点C旋转一定角度(大于零度而小于六十度),以上的结论海成立吗?,例3:如图,OBAB,OCAC,垂足为B,C,OB=OCAO平分BAC吗?为什么?,答:AO平分BAC,练习3:ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直AB、AC,垂足为E、F,求证:EB=FC,例4:如图,D在AB上,E在AC上,AB=AC,B=C,试问AD=AE吗?为什么?,解:AD=AE,练习4:如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带那块去合适?为什么?,AB,例5:已知AC=DB,1=2.求证:A=D,练习5:如图,已知E在AB上,1=2,3=4,那么AC等于AD吗?为什么?,解:AC=AD,例6:如图所示,AB与CD相交于点O,A=B,OA=OB添加条件所以AOCBOD理由是,C=D,AOC=BOD,AAS,ASA,例7:如图所示,AB=AD,E=C要想使ABCADE可以添加的条件是依据是,EDA=B,DAE=BAC,BAD=EAC,AAS,例8:如图,已知AB=CD,DEAC,BFAC,AE=CF求证:ABFCDE,AB=ED,AC=EF,BC=DF,DC=BF,返回,练习,1:如图,已知,ABDE,AB=DE,AF=DC。请问图中有那几对全等三角形?请任选一对给予证明。,ABFDEC,CBFFEC,ABCDEF,答:,练2,练习,1:如图,已知,ABDE,AB=DE,AF=DC。请问图中有那几对全等三角形?请任选一对给予证明。,ABFDEC,答:,证明:,证明:,证明:,练习,2:如图,已知,EGAF,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。(只写出一种情况)AB=ACDE=DFBE=CF已知:EGAF求证:,高,3:如图,ABAB,ACAC,且BB=CC你能说明AC=AC的理由吗?,练习,高,F,E,D,C,B,A,4、如图,BE,ABEF,BDEC,那么ABC与FED全等吗?为什么?,解:全等。BD=EC(已知)BDCDECCD。即BCED,在ABC与FED中,ABCFED(SAS),考考你,小明的设计方案:先在池塘旁取一个能直接到达A和B处的点C,连结AC并延长至D点,使AC=DC,连结BC并延长至E点,使BC=EC,连结CD,用米尺测出DE的长,这个长度就等于A,B两点的距离。请你说明理由。,AC=DCACB=DCEBC=EC,ACBDCE(SAS),AB=DE,E,C,B,A,D,5、如图线段AB是一个池塘的长度,现在想测量这个池塘的长度,在水上测量不方便,你有什么好的方法较方便地把池塘的长度测量出来吗?想想看。,解:在ACB和DCE中,,(全等三角形对应边相等。),6、如图,已知AB=AD,AC=AE,1=2,求证:BC=DE,如果ABDACE,1与2相等吗?,解ABDACE(已知)DAB=EAC(全等三角形的对应角相等)DAB-BAE=EAC-BAE即1=2,探究:,BPC,APC和BPC,PA=PB(已知),PC=PC(公共边),APCBPC,SAS,全等三角形对应角相等,8:如图,已知ABC中,BE和CD分别为ABC和ABC的平分线,且BD=CE,1=2。说明BE=CD的理由。,解:DBC=21,ECB=22(角平分线的定义)1=2DBC=ECB,在DBC和ECB中BD=CE(已知)DBC=ECBBC=CB(公共边),DBCECB(SAS)BE=CD(全等三角形的对应边相等),知识应用:,1.已知ABC和DEF,下列条件中,不能保证ABC和DEF全等的是()AB=DE,AC=DF,BC=EFA=D,B=E,AC=DFC.AB=DE,AC=DF,A=DD.AB=DE,BC=EF,C=F,D,知识应用:,2.要说明ABC和DEF全等,已知条件为AB=DE,A=D,不需要的条件为()B=EB.C=FC.AC=DFD.BC=EF,3.要说明ABC和DEF全等,已知A=D,B=E,则不需要的条件是()C=FB.AB=DEC.AC=EFD.BC=EF,D,A,4.两个三角形全等,那么下列说法错误的是()A.对应边上的三条高分别相等B.对应边上的三条中线分别相等C.两个三角形的面积相等D.两个三角形的任何线段相等,知识应用:,D,拓展题,1.已知AB=AE,AC=AD,ACAD,ABAE;,E,C,A,B,2,1,D,(2)怎样变换ABC和AED中的一个位置,可使它们重合?,(3)观察ABC和AED中对应边有怎样的位置关系?,(4)试证EDBC,(1).观察图中有没有全等三角形?,拓展题,2.如图,已知A=D,AB=DE,AF=CD,BC=EF.求证:BCEF,拓展题,3.如图,已知ACBD,EA、EB分别平分CAB和DBA,CD过点E,则AB与AC+BD相等吗?请说明理由。,要证明两条线段的和与一条线段相等时常用的两种方法:1、可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。(割)2、把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等。(补),总结提高,学习全等三角形应注意以下几个问题:,(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;,(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;,(3):要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;,(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”,第15章轴对称图形和等腰三角形,本章目录,15.1轴对称图形15.2线段的垂直平分线15.3等腰三角形15.4角的平分线,把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线叫做对称轴。把一个图形沿一条直线折叠,如果它能与另一个图形完全重合,那么这两个图关于这条直线成轴对称。这条直线叫做对称轴。,15.1(轴对称图形)知识点回顾,1、轴对称图形:,2、轴对称:,3、轴对称图形和轴对称的区别与联系,轴对称图形,轴对称,区别,联系,图形,(1)轴对称图形是指()具有特殊形状的图形,只对()图形而言;(2)对称轴()只有一条,(1)轴对称是指()图形的位置关系,必须涉及()图形;(2)只有()对称轴.,如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称.,如果把两个成轴对称的图形拼在一起看成一个整体,那么它就是一个轴对称图形.,一个,一个,不一定,两个,两个,一条,知识回顾:,4、轴对称的性质:,如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线。如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。,:,:,1.下面的图形是轴对称图形吗?如果是,你能指出它的对称轴吗?,2、国旗是一个国家的象征,观察下面的国旗,是轴对称图形的是()A.加拿大、韩国、乌拉圭B.加拿大、瑞典、澳大利亚C.加拿大、瑞典、瑞士D.乌拉圭、瑞典、瑞士,加拿大韩国澳大利亚乌拉圭瑞典瑞士,C,哪一面镜子里是他的像?,3、练练你的眼力,4、小明照镜子的时候,发现T恤上的英文单词在镜子中呈现“”的样子,请你判断这个英文单词是(),(A),(B),(C),(D),A,5、ABC与DEF关于直线L成轴对称,则C是多少度?,L,650,750,15.2(线段的中垂线)知识点回顾,1、线段中垂线的性质定理:线段中垂线上的点到线段两端点的距离相等。,2、逆定理:线段中垂线上的点与线段两端点的距离相等。,如图:在ABC中,DE是AC的垂直平分线,AC=5厘米,ABD的周长等于13厘米,则ABC的周长是。,A,B,D,E,C,18厘米,练习,15.3(等腰三角形)知识点回顾,1、性质:等腰三角形的两个底角相等。(等边对等角)等边三角形的三个角都相等,并且每个角都等于600。2、性质:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一),推论:,3、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)三个角都相等的三角形是等边三角形。有一个角是600的三角形是等边三角形。在直角三角形中,300的锐角所对的直角边等于斜边的一半。,判定定理:,推论:,推论:,推论:,1、如图,在ABC中,AB=AC时,(1)ADBC_=_;_=_(2)AD是中线_;_=_(3)AD是角平分线_;_=_,BAD,CAD,BD,CD,AD,BC,BAD,CAD,AD,BC,BD,CD,练习:,2、“有一个等腰三角形的两条边长分别是4cm和8cm,则周长为,20cm,3、若等腰三角形的一个角为400,则另外两个角的度数为,700,700或400,1000,4、已知,如图:AB=ACAD=DC=BC则A=,A,B,C,D,360,5、已知,如图AB=AB=CDAD=BD则BAC=,A,B,C,D,1080,15.4角平分线的性质与判定:1、性质定理:角平分线上的点到角两边的距离相等。2、判定定理:到角两边距离相等的点在角的平分线。,1、如图,在ABC中,ABC的角平分线交AC于P,一个同学马上就得到PA=PC,你觉得对吗?,2、如图:在ABC中,C=900,AD平分BAC,DEAB交AB于E,BC=30,BD:CD=3:2,则DE=。,12,c,A,B,D,E,1、哪个在镜子中的像跟原来的一样?(直线表示进镜子、垂直放置在纸条前),口木E目人晶SN中田,课堂练习:,2、等腰三角形的对称轴最多有条,最少有条,圆的对称轴有条,它的对称轴是。,3、以下是部分常用的交通标志图,仔细观察哪些是轴对称图形?,(1)(2)(3)(4)(5)(6),4、如图,画出所示图形关于直线l的对称图形。,A,l,l,A,B,C,l,l,(1)(2),3,1,B,答:轴对称图形是:(1)(2)(3)(5)(6)。,无数,直径所在的直线,5、如图,已知AD是BC的中垂线,:你能根据现有条件,推得ABD=ACD吗?,A,D,B,C,1,2,3,4,6、如图,在ABC中,AB=AC=16cm,AB的垂直平分线交AC于D,如果BC=10cm,那么BCD的周长是_cm.,A,B,C,D,E,26cm,7、如图,P、Q是ABC边上的两点,BP=PQ=QC=AP=AQ,求BAC的度数。,8、如图,ABC、ACB的平分线相交于F,过F作DE/BC交AB于D,交AC于E,若AB=9cm,AC=8cm,则ADE的周长是多少?,9、某开发区新建了两片住宅区:A区、B区(如图)。现在要从煤气主管道的一个地方建立一个接口,同时向这两个小区供气.请问,这个接口应建在哪,才能使得所用管道最短?,A小区,B小区,煤气主管道,),),),.,.,10、如图:设L1,L2是平行且镜面相对的两面镜子,把一个小球A放在L1,L2之间,小球在镜L1中的像为A1,A在镜L2中的像为A2,当L1,L2间的距离为18厘米。(1)试求A1与A2间的距离;(2)若小球在L1,L2间运动,A1与A2间的距离改变吗?,A,L1,L2,A1,A2,B,C,解:如图,A与A1关于L1对称,A与A2关于L2对称A1B=AB,A2C=ACA1A2=2BC=36厘米答:A1与A2间的距离为36厘米。,11、已知如图:一辆汽车在直线公路AB上由A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论