九年级-数学课件-第三章_圆的复习-人教版[整理]_第1页
九年级-数学课件-第三章_圆的复习-人教版[整理]_第2页
九年级-数学课件-第三章_圆的复习-人教版[整理]_第3页
九年级-数学课件-第三章_圆的复习-人教版[整理]_第4页
九年级-数学课件-第三章_圆的复习-人教版[整理]_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章圆的复习,典例分析,1、弧、弦、圆心角的关系,A,C,B,D,E,O,例2、在O中AB与CD相等,ODBC,OEAC,垂足分别为D,E,且OD=OE,那么ABC是什么三角形?为什么?,B,A,C,E,D,2、圆周角与圆心角的关系,例3、在O直径AB=13cm,C为O上的一点,已知CDAB,垂足为D,并且CD=6cm,ADDB,求AD的长。,A,B,D,C,例4、A、B、C、D是O上的四个点,AB=AC,AD交BC于点E,AE=2,ED=4,求AB的长。,B,A,C,D,E,3、位置关系:点与圆,直线与圆,圆与圆,例5、请作出图形,并回答问题。在ABC中,C=900,内切圆O与三边的切点分别为D、E、F,(1)连接OE、OD。你认为四边形ECDO是什么形状?为什么?(2)连接OA、OB,求AOB的度数。,4、切线性质、切线判定,例6、已知RTABC的斜边AB=6cm,直角边AC=3cm,圆心为C,半径分别为2cm和4cm的两个圆与AB有怎样的位置关系?半径多长时,AB与圆相切?,5、圆的有关计算,弧长及扇形面积圆锥侧面积、全面积,6、尺规作图,二、常用辅助线作法的应用,在解决与弦、弧有关的问题时,常作弦心距、半径等辅助线,利用垂径定理、推论及勾股定理解决问题。,2.1、弦心距-有弦,可作弦心距。,例1、如图,已知,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点。求证:AC=BD。,由垂径定理得:AE=EB,CE=DE,证明:过O作OEAB,垂足为E。,E,即:AC=BD,AE-CE=BE-DE,在解决有关直径的问题时,常作直径上的圆周角,构成直径所对的圆周角是直角,寻找隐含的条件,从而得到所求结论。,2.2、直径圆周角-有直径,可作直径上的圆周角.,例2、已知:MN切O于A点,PC是直径,PBMN于B点,求证:,证明:连结AC、AP,PC是O的直径CAP=90,PBMNPBA=90,CAP=PBA,MN是0的切线BAP=ACP,在解决有关切线问题时,常作过切点的半径,利用切线的性质定理;或者连结过切点的弦,利用弦切角定理,使问题得以解决。,2.3、切线径-有切点,可作过切点的半径。,例3、如图,AB、AC与O相切有与B、C点,A=50,点P优弧BC的一个动点,求BPC的度数。,BOC=360-A-ABO-ACO=360-50-90-90=130,解:连结OB、OC,,AB、AC是O的切线,ABOB,ACOC,,在四边形ABOC中,A=50,BPC=65,ABO=ACO=90,在解决两圆相交的问题时,常作两圆的公共弦,构成圆内接四边形。再利用圆内接四边形定理,架设两圆之间的”桥梁”,从而寻找两圆之间的等量关系。,2.4、两圆相交公共弦-两圆相交,可作公共弦。,在解决有关中点和圆心的问题时,可先连结中点与圆心。利用垂径定理,或者是三角形、梯形的中位线定理,可求出所需要的结论。,2.5、中点圆心线-有中点和圆心,可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论