空间向量复习_第1页
空间向量复习_第2页
空间向量复习_第3页
空间向量复习_第4页
空间向量复习_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

空间向量复习,O,A,B,结论:空间任意两个向量都是共面向量,所以它们可用同一平面内的两条有向线段表示。因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们。,3.1.1空间向量的运算,平面向量,概念,加法减法数乘运算,运算律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或平行四边形法则,空间向量,具有大小和方向的量,数乘:ka,k为正数,负数,零,加法交换律,加法结合律,数乘分配律,类比思想数形结合思想,数乘:ka,k为正数,负数,零,推广:,(1)首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量;,(2)首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量。,G,M,始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所示向量,一、共线向量:,零向量与任意向量共线.,3.1.2共线向量定理与共面向量定理,若P为A,B中点,则,假如OP=OA+tAB,则点P、A、B三点共线。,可用于证明点共线,二.共面向量:,1.共面向量:平行于同一平面的向量,叫做共面向量.,注意:空间任意两个向量是共面的,但空间任意三个向量就不一定共面的了。,2.共面向量定理:如果两个向量不共线,则向量与向量共面的充要条件是存在实数对使,注:可用于证明三个向量共面,推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x,y使或对空间任一点O,有,1、已知a=(2,4,5),b=(3,x,y),若ab,求x,y的值。2、证明:三向量a=e1+e2,b=3e1-2e2,c=2e1+3e2共面;若a=mb+nc,试求实数m、n之值。,1)两个向量的夹角,3.1.3空间向量的数量积,2)两个向量的数量积,注意:两个向量的数量积是数量,而不是向量.零向量与任意向量的数量积等于零。,3)射影,B,A,注意:是轴l上的正射影,A1B1是一个可正可负的实数,它的符号代表向量与l的方向的相对关系,大小代表在l上射影的长度。,4)空间向量的数量积性质,注意:性质2)是证明两向量垂直的依据;性质3)是求向量的长度(模)的依据;,对于非零向量,有:,5)空间向量的数量积满足的运算律,注意:,1、应用可证明两直线垂直,2、利用可求线段的长度。,向量数量积的应用,3.1.4空间向量正交分解及其坐标表示,二、空间直角坐标系,3.1.5向量的直角坐标运算,二、距离与夹角,1.距离公式,(1)向量的长度(模)公式,注意:此公式的几何意义是表示长方体的对角线的长度。,在空间直角坐标系中,已知、,则,(2)空间两点间的距离公式,2.两个向量夹角公式,注意:(1)当时,同向;(2)当时,反向;(3)当时,。,思考:当及时,的夹角在什么范围内?,立体几何中的向量方法,1、用空间向量解决立体几何问题的“三步曲”。,(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;,(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;,(3)把向量的运算结果“翻译”成相应的几何意义。,(化为向量问题),(进行向量运算),(回到图形问题),二、怎样求平面法向量?,1、已知正方体ABCD-A1B1C1D1的棱长为2,E、F分别是BB1、DD1的中点,求证:(1)FC1/平面ADE(2)平面ADE/平面B1C1F,证明:如图1所示建立空间直角坐标系D-xyz,则有D(0,0,0)、A(2,0,0)、C(0,2,0)、C1(0,2,2)、E(2,2,1)、F(0,0,1),所以,设,分别是平面ADE、平面B1C1F的法向量,则,,2、已知向量则上的单位向量为:,同理可求,(1),,又FC1,平面ADE,,平面ADE,平面ADE/平面B1C1F,(2),取y=1,则,三、有关结论,异面直线所成角的范围:,结论:,3.2.3利用空间向量求空间角,题型二:线面角,直线与平面所成角的范围:,直线AB与平面所成的角可看成是向量与平面的法向量所成的锐角的余角,所以有,二面角的范围:,关键:观察二面角的范围,B,A,a,M,N,n,a,b,一、求异面直线的距离,方法指导:作直线a、b的方向向量a、b,求a、b的法向量n,即此异面直线a、b的公垂线的方向向量;在直线a、b上各取一点A、B,作向量AB;求向量AB在n上的射影d,则异面直线a、b间的距离为,方法指导:作直线a、b的方向向量a、b,求a、b的法向量n,即此异面直线a、b的公垂线的方向向量;在直线a、b上各取一点A、B,作向量AB;求向量AB在n上的射影d,则异面直线a、b间的距离为,3.2.4,如图点P为平面外一点,点A为平面内的任一点,平面的法向量为n,过点P作平面的垂线PO,记PA和平面所成的角为,则点P到平面的距离,n,A,P,O,二、求点到平面的距离,例4、已知正方形ABCD的边长为4,CG平面ABCD,CG=2,E、F分别是AB、AD的中点,求直线BD到平面GEF的距离。,D,A,B,C,G,F,E,三、求直线与平面间距离,例5、在边长为1的正方体ABCD-A1B1C1D1中,M、N、E、F分别是棱A1B1、A1D1、B1C1、C1D1的中点,求平面AMN与平面EFDB的距离。,四、求平行平面与平面间距离,立体几何中的向量方法坐标法,问题1:已知:ABC为正三角形,EC平面ABC,且EC,DB在平面ABC同侧,CE=CA=2BD.求证:平面ADE平面ACE.,怎样建立适当的空间直角坐标系?,怎样证明平面ADE平面ACE?,如何求平面ADE、平面ACE的法向量?,一个平面的法向量有多少个?,能否设平面ADE的法向量为n=(1,y,z)?,这样做有什么好处?,解:分别以CB,CE所在直线为y,z轴,C为原点建立空间直角坐标系C-xyz,如右下图,设正三角形ABC边长为2则C(0,0,0)、E(0,0,2)、D(0,2,1)、B(0,2,0)、,设N为AC中点,则N连接BN,ABC为正三角形,BNAC,EC平面ABC,BNEC,又ACEC=C,BN平面ACE.因此可取向量为平面ACE的法向量.那么,设平面ADE的法向量为n=(1,y,z),则,nn,n=,n,平面DEA平面ACE.,为了方便计算,能否取平面ACE的法向量为,通过上例,你能说出用坐标法解决立体几何中问题的一般步骤吗?,步骤如下:1.建立适当的空间直角坐标系;2.写出相关点的坐标及向量的坐标;3.进行相关的计算;4写出几何意义下的结论.,小结:,1、怎样利用向量求距离?,点到平面的距离:连结该点与平面上任意一点的向量在平面定向法向量上的射影(如果不知道判断方向,可取其射影的绝对值)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论