已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
更多资料关注q877197252解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。具体转化方法有:分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。零点分段讨论法:适用于含一个字母的多个绝对值的情况。两边平方法:适用于两边非负的方程或不等式。几何意义法:适用于有明显几何意义的情况。因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:换元法解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:设元换元解元还元待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:设 列 解 写复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。因式分解型:(-)(-)=0两种情况为或型配成平方型:(-)2+(-)2=0两种情况为且型数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组化简二次根式基本思路是:把m 化成完全平方式。即:观察法代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用分类讨论法,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论恒相等成立的有用条件(1) ax+b=0 对于任意x 都成立关于x 的方程ax+b=0 有无数个解a=0 且b=0。(2) ax2bxc0 对于任意x 都成立关于x 的方程 ax2bxc0 有无数解a=0、b=0、c=0。恒不等成立的条件由一元二次不等式解集为R 的有关结论容易得到下列恒不等成立的条件:平移规律图像的平移规律是研究复杂函数的重要方法。平移规律是:图像法讨论函数性质的重要方法是图像法看图像、得性质。定义域图像在X 轴上对应的部分值域图像在Y 轴上对应的部分单调性从左向右看,连续上升的一段在X 轴上对应的区间是增区间;从左向右看,连续下降的一段在X 轴上对应的区间是减区间。最值图像最高点处有最大值,图像最低点处有最小值奇偶性 关于Y 轴对称是偶函数,关于原点对称是奇函数函数、方程、不等式间的重要关系方程的根函数图像与x 轴交点横坐标不等式解集端点一元二次不等式的解法一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:二次化为正判别且求根画出示意图解集横轴中一元二次方程根的讨论一元二次方程根的符号问题或m 型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像法”解决一元二次方程根的问题的一般思路是:题意二次函数图像不等式组不等式组包括:a 的符号;的情况;对称轴的位置;区间端点函数值的符号。基本函数在区间上的值域我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值有两种情况:(1)定义域没有特别限制时-记忆法或结论法;(2)定义域有特别限制时-图像截断法,一般思路是:画出图像截出一断得出结论最值型应用题的解法应用题中,涉及“一个变量取什么值时另一个变量取得最大值或最小值”的问题是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是:设变量列函数求最值写结论穿线法穿线法是解高次不等式和分式不等式的最好方法。其一般思路是:首项化正求根标根右上起穿奇穿偶回注意:高次不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 菏泽职业学院《资产评估》2024-2025学年第一学期期末试卷
- 土工布抗氧化性能试验记录
- 化学改良土水泥或石灰剂量标准曲线试验记录
- 下属企业安全生产目标责任书
- 吴门验方“阳和散结汤”治疗乳腺癌理论浅析
- 浅析大学生社会实践在高校人才培养中的地位和作用
- 汉语言论文排版格式
- 基于供应链管理下的工程项目采购管理
- 江姐的演唱特点-以唱段《盼亲人》《松涛我的亲人》为例
- 试论《哈利-波特》系列的语言特色
- T∕CEC 199-2019 船岸连接电缆管理系统技术条件
- 中国移动《下一代全光骨干传送网白皮书》
- 转基因的科学-基因工程智慧树知到期末考试答案章节答案2024年湖南师范大学
- 2022年版初中物理课程标准解读-课件
- 前列腺癌手术麻醉管理
- MOOC 广告创意学-湖南大学 中国大学慕课答案
- 2024年建筑业10项新技术
- 物业保洁品质提升方案及措施
- 2019年一级注册消防工程师继续教育三科题库+答案
- 培训市场介绍
- 《驿路梨花》专题探究课件(悬念与构思)
评论
0/150
提交评论