已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
衡水独家秘籍之2019高中期末复习专题六异面直线问题求解攻略【方法综述】异面直线是空间中直线与直线之间的位置关系中一类最重要的位置关系,它在立体几何中占有重要的地位,是历年考查的重点和热点,围绕异面直线设计的命题,主要有以下类型,一是概念的辨析,二是判定与证明,三是角的计算.下面举例说明1概念的辨析异面直线是指不同在任何一个平面内的两条直线两条直线是异面直线等价于这两条直线既不相交,也不平行要注意把握异面直线的这种不共面特性应该明确分别在不同平面内的两条直线不一定是异面直线,在某一平面内的一条直线与这个平面外的一条直线也不一定是异面直线例1.若直线l1和l2是异面直线,l1在平面内,l2在平面内,l是平面与平面的交线,则下列命题正确的是( )A l与l1,l2都不相交 B l与l1,l2都相交C l至多与l1,l2中的一条相交 D l至少与l1,l2中的一条相交解析 在A中,直线l与l1、l2可以相交,如图,所以选项B错误;在B中,直线l可以与l1、l2中的一个平行,如上图,所以选项B错误;在C中,直线l与l1、l2可以都相交,如图,所以选项C错误;在D中,“l至少与l1,l2中的一条相交”正确,假设直线l与l1、l2都不相交,因为直线l与l1、l2都共面,所以直线l与l1、l2都平行,所以l1l2,这与直线l1和l2是异面直线矛盾,所以选项D正确.答案D.点评:异面直线的定义强调的是这两条直线不同在任何一个平面内,而不是指在某特定平面内2异面直线的判定与证明异面直线的判定方法有:定义法,由定义判断两直线不可能在同一平面内;反证法,用此方法可以证明两直线是异面直线例2.M,N,E,F,G,H,P,Q是正方体ABCDA1B1C1D1所在棱的中点,则PQ,EF,GH中与直线MN异面的直线是_分析要判定两条直线的位置关系可以根据定义及相关知识进行判断解析首先,我们不难看出PQMN;其次,根据平面的基本性质,可得MN,EF交于一点,即MN与EF共面;最后,我们可直观地得到GH与MN异面答案GH点评:判断两条直线是不是异面直线,除了根据定义及平面的基本性质外,直观上的感知也是十分重要的一方面3求异面直线所成的角求异面直线所成的角的解题思路是:把空间两异面直线通过平移,转化为平面内相交直线所成的角,具体的平移过程应视题而定主要有以下四种平移途径:利用三角形的中位线平移;利用平行线分线段成比例的推论平移;利用平行四边形平移;利用补形平移例3.如图,在每个面都为等边三角形的四面体SABC中,若点E,F分别为SC,AB的中点,试求异面直线EF与SA所成的角分析要求异面直线EF与SA所成的角,首先依定义作出其所成角,为此取SB的中点D,连接ED,FD,根据三角形中位线性质知EFD是异面直线EF与SA所成的角解如图,连接CF,SF,设四面体SABC的棱长为a,则SFCFa.因为E为SC的中点,所以EFSC.在RtSEF中,SESCa,所以EFa.取SB的中点为D,连接ED,FD.因为BCSAa,而FDSA且FDSA,EDCB且EDCB,所以FDEDa,于是FD2ED2EF2.故DEF是等腰直角三角形,可得EFD45,即异面直线EF与SA所成的角是45.点评:本题以正四面体为依托,通过求异面直线所成的角,考查了异面直线的有关概念,明确了求异面直线所成角的具体求解方法,即“作证求”【针对训练】1下列命题中,正确的是()Aa,b,则a与b是异面直线B过平面外一点与平面内一点的直线,与平面内任一直线均构成异面直线C不同在任何一个平面内的两条直线是异面直线D异面直线所成的角的范围是0,90【答案】C【解析】分析根据异面直线有关概念进行判断,将错误的选项逐一排除解:选项A中,a,b的位置关系有可能相交、平行或异面;选项B中,过平面外一点与平面内一点的直线,和平面内过该点的直线是相交直线;选项D中,两条平行或重合的直线所成的角为0,因此异面直线所成角的范围是(0,90,故答案选C.2正四面体ABCD中,E,F分别为棱AD,BC的中点,则异面直线EF与CD所成的角是( )A 6 B 4 C 3 D 2【答案】B【解析】取BD中点O,连结EO,FO,设正四面体的棱长为a,则OF/CD,OE/AB,且OF=OE=a2,EFO是异面直线EF与CD所成的角,取CD中点G,连结BG,AG则AGCD,BGCD,BGAG=G,CD平面ABG,AB平面ABG,CDAB,OFOE,EFO=4,异面直线EF与CD所成的角为4,故选B .3如图,多面体OABCD, AB=CD=2,AD=BC=AC=BD=2,且OA,OB,OC两两垂直给出下列四个命题:三棱锥O-ABC的体积为定值;经过A,B,C,D四点的球的直径为5;直线OB平面ACD;直线AD,OB所成的角为60;其中真命题的个数是()A 1 B 2 C 3 D 4【答案】C【解析】由题意,构造长方体,如右图,设OA=x,OB=y,OC=z,则x2+y2=2,x2+z2=4,y2+z2=4,解得,x=y=1,z=3,对于,三棱锥OABC的体积为13OC12OAOB=23,故对;对于,球面经过点A、B、C、D两点的球的直径即为长方体的对角线长,即为(12+12+(3)2=5,故对;对于,由于OBAE,AE和平面ACD相交,则OB和平面ACD相交,故错对于,由于OBAE,则DAE即为直线AD与OB所成的角,由tanDAE=DEAE=3,则DAE=60,故对;故选:C4如图,已知三棱柱ABC-A1B1C1的各条棱长都相等,且CC1底面ABC,M是侧棱CC1的中点,则异面直线AB1和BM所成的角为()A 2 B C D 3【答案】A【解析】设棱长为a,补正三棱柱ABC-A2B2C2(如图)平移AB1至A2B,连接A2M,MBA2即为AB1与BM所成的角,在A2BM中,A2B=2a,BM=a2+(a2)2=52a,A2M=a2+(3a2)2=132a,A2B2+BM2=A2M2,MBA2=2, 故选:A5如图是一个几何体的平面展开图,其中四边形ABCD为正方形,PDC, PBC, PAB, PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为 ( )A 平面BCD平面PAD B 直线BE与直线AF是异面直线C 直线BE与直线CF共面 D 面PAD与面PBC的交线与BC平行【答案】A【解析】由展开图恢复原几何体如图所示:折起后围成的几何体是正四棱锥,每个侧面都不与底面垂直,A不正确;由点A不在平面EFCB内,直线BE不经过点F,根据异面直线的定义可知:直线BE与直线AF异面,所以B正确;在PAD中,由PE=EA,PF=FD,根据三角形的中位线定理可得EF/AD,又AD/BC,EF/BC,故直线BE与直线CF共面,所以C正确;BC/AD,BC/面PAD,由线面平行的性质可知面PAD与面PBC的交线与BC平行,D正确,故选A.6如图,在正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:直线AM与CC1是相交直线;直线BN与MB1是异面直线;直线AM与BN是平行直线;直线AM与DD1是异面直线其中正确的结论为( )A B C D 【答案】D【解析】A,M,C,C1四点不共面,直线AM与CC1是异面直线,故错误;直线BN与MB1不同在任何平面内,是异面直,故正确;直线AM与BN不同在任何平面内,是异面直线,故错误;直线AM与DD1不同在任何平面内,是异面直,故正确,故选D.7关于异面直线a,b,有下列四个命题:(1)过直线a有且仅有一个平面,使b/;(2)过直线a有且仅有一个平面,使b;(3)在空间中存在平面,使a/,b/;(4)在空间中不存在平面,使a,b;其中正确命题的序号是_.【答案】(1)(3)(4)【解析】在直线a选一点A,过A作直线cb,由公理3的推论可知存在平面,使得a,c,因a,b异面,故b,所以b,若存在不同的平面,,使得a,a,b,a,则=a,故ab,与a,b异面矛盾,故(1)正确.对于(2),若存在平面,使得b,因a,故ab,所以当a,b不垂直时,(2)就不成立,故(2)错.对于(4),如存在平面,使得a,b,则ab,与a,b异面矛盾,故(4)正确.对于(3),在空间中取Q,过Q分别作a,b的平行线a,b,设相交直线a,b确定的平面为(如果a,b中有一条直线在该平面中,可平移该平面使得a,b均在平面外),则a,b,故(3)正确.综上,填(1)(3)(4).8异面直线a,b成60角,直线ac,则直线b,c所成角的范围是_【答案】30,90【解析】如图:所有与a垂直的直线平移到O点组成一个与直线a垂直的平面,O点是直线a与平面的交点, 做b的平行线b,交a于O点,在直线b上取一点P,做垂线PP平面,交平面于P ,角POP是b与面的线面夹角为30,在平面中,所有与OP平行的线与b的夹角都是30,为最小角,在平面内所有与OP垂直的线(由于PP垂直于平面 ,所以该线垂直与PP,则该线垂直平面OPP,所以该线垂直与b )与b的夹角等于90,为最大角,故答案为30,90.9如图所示,正方体ABCDA1B1C1D1中,M、N分别是A1B1、B1C1的中点,问:(1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由【答案】(1)不是异面直线(2)是异面直线【解析】(1)不是异面直线,理由:连结MN,A1C1、AC,如图,因为M、N分别是A1B1、B1C1的中点,所以MNA1C1.又因为A1A D1D,D1DC1C,所以A1AC1C,四边形A1ACC1为平行四边形,所以A1C1AC,故MNA1C1AC,所以A、M、N、C在同一个平面内,故AM和CN不是异面直线(2)是异面直线,证明如下:假设D1B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 与食品公司合作协议书模板
- 2026-2031中国抽屉梳妆台行业市场调查及投资战略预测报告
- 2026-2031中国轨道车辆内装饰行业发展趋势及投资前景预测报告
- 2026-2031中国光端机行业市场调查及投资前景预测报告
- 2026-2031中国公关行业发展趋势预测及投资战略研究报告
- 金融市场开放度的测度研究
- 2025年环保产业与清洁能源知识考察试题及答案解析
- 2025年度有限空间及作业培训考试题(附答案)
- 2025年反假货币知识与技能竞赛题库及答案
- 2025年全国高校辅导员素质能力大赛基础知识测试题附参考答案
- 颈肩腰腿疼中医治疗
- 人教版历史2024年第二学期期末考试七年级历史试卷(含答案)
- 主要粮食作物机收减损技术-农业农机技术培训课件
- 中国血脂管理指南(基层版2024年)解读
- 【医院管理分享】:4C服务模式构建和谐医患关系-武汉大学中南医院实践
- 邮政社招笔试题
- 2024急性脑梗死溶栓规范诊治指南(附缺血性脑卒中急诊急救专家共识总结归纳表格)
- 《抽水蓄能电站施工监理规范》
- 物联网应用技术职业生涯规划
- 2024年云南省公路交通机电工程专业知识模拟试题(100题)含答案
- 茶叶及茶多酚单体EGCG的抗焦虑作用及机制探讨
评论
0/150
提交评论