




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考大题增分专项四高考中的立体几何,-2-,从近五年的高考试题来看,立体几何是历年高考的重点,约占整个试卷的13%,通常以一大一小的模式命题,以中、低档难度为主.三视图、简单几何体的表面积与体积、点、线、面位置关系的判定与证明以及空间角的计算是考查的重点内容,前者多以客观题的形式命题,后者主要以解答题的形式加以考查.着重考查推理论证能力和空间想象能力,而且对数学运算的要求有加强的趋势.转化与化归思想贯穿整个立体几何的始终.,-3-,题型一,题型二,题型三,线线、线面平行或垂直的转化1.在解决线线平行、线面平行问题时,若题目中已出现了中点,可考虑在图形中再取中点,构成中位线进行证明.2.要证线面平行,先在平面内找一条直线与已知直线平行,或找一个经过已知直线与已知平面相交的平面,找出交线,证明二线平行.3.要证线线平行,可考虑公理4或转化为线面平行.4.要证线面垂直可转化为证明线线垂直,应用线面垂直的判定定理与性质定理进行转化.,-4-,题型一,题型二,题型三,例1(2016山东,文18)在如图所示的几何体中,D是AC的中点,EFDB.(1)已知AB=BC,AE=EC.求证:ACFB;(2)已知G,H分别是EC和FB的中点.求证:GH平面ABC.,-5-,题型一,题型二,题型三,证明(1)因为EFDB,所以EF与DB确定平面BDEF.连接DE.因为AE=EC,D为AC的中点,所以DEAC.同理可得BDAC.又BDDE=D,所以AC平面BDEF.因为FB平面BDEF,所以ACFB.,-6-,题型一,题型二,题型三,(2)设FC的中点为I,连接GI,HI.在CEF中,因为G是CE的中点,所以GIEF.又EFDB,所以GIDB.在CFB中,因为H是FB的中点,所以HIBC.又HIGI=I,所以平面GHI平面ABC.因为GH平面GHI,所以GH平面ABC.,-7-,题型一,题型二,题型三,对点训练1如图,在五面体ABCDEF中,四边形ABCD为正方形,EFAD,平面ADEF平面ABCD,且BC=2EF,AE=AF,点G是EF的中点.(1)证明:AGCD;(2)若点M在线段AC上,且,求证:GM平面ABF;(3)已知空间中有一点O到A,B,C,D,G五点的距离相等,请指出点O的位置.(只需写出结论),-8-,题型一,题型二,题型三,(1)证明因为AE=AF,点G是EF的中点,所以AGEF.又因为EFAD,所以AGAD.因为平面ADEF平面ABCD,且平面ADEF平面ABCD=AD,AG平面ADEF,所以AG平面ABCD.因为CD平面ABCD,所以AGCD.,-9-,题型一,题型二,题型三,(2)证明如图,过点M作MNBC,且交AB于点N,连接NF,因为BC=2EF,点G是EF的中点,所以BC=4GF.又因为EFAD,四边形ABCD为正方形,所以GFMN,GF=MN.所以四边形GFNM是平行四边形.所以GMFN.又因为GM平面ABF,FN平面ABF,所以GM平面ABF.(3)解点O为线段GC的中点.,-10-,题型一,题型二,题型三,1.判定面面平行的四个方法(1)利用定义:即判断两个平面没有公共点.(2)利用面面平行的判定定理.(3)利用垂直于同一条直线的两平面平行.(4)利用平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行.,-11-,题型一,题型二,题型三,2.面面垂直的证明方法(1)用面面垂直的判定定理,即先证明其中一个平面经过另一个平面的一条垂线.(2)用面面垂直的定义,即证明两个平面所成的二面角是直二面角.3.从解题方法上说,由于线线平行(垂直)、线面平行(垂直)、面面平行(垂直)之间可以相互转化,因此整个解题过程始终沿着线线平行(垂直)、线面平行(垂直)、面面平行(垂直)的转化途径进行.,-12-,题型一,题型二,题型三,例2(2016天津,文17)如图,四边形ABCD是平行四边形,平面AED平面ABCD,EFAB,AB=2,BC=EF=1,AE=,DE=3,BAD=60,G为BC的中点.(1)求证:FG平面BED;(2)求证:平面BED平面AED;(3)求直线EF与平面BED所成角的正弦值.,-13-,题型一,题型二,题型三,(1)证明取BD中点O,连接OE,OG.在BCD中,因为G是BC中点,又因为EFAB,ABDC,所以EFOG且EF=OG,即四边形OGFE是平行四边形,所以FGOE.又FG平面BED,OE平面BED,所以,FG平面BED.,-14-,题型一,题型二,题型三,(2)证明在ABD中,AD=1,AB=2,BAD=60,由余弦定理可得BD=,进而ADB=90,即BDAD.又因为平面AED平面ABCD,BD平面ABCD,平面AED平面ABCD=AD,所以BD平面AED.又因为BD平面BED,所以,平面BED平面AED.,-15-,题型一,题型二,题型三,(3)解因为EFAB,所以直线EF与平面BED所成的角即为直线AB与平面BED所成的角.过点A作AHDE于点H,连接BH.又平面BED平面AED=ED,由(2)知AH平面BED.所以,直线AB与平面BED所成的角即为ABH.,-16-,题型一,题型二,题型三,对点训练2如图所示,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1BC,B1C1=(1)求证:平面A1AC平面ABC;(2)求证:AB1平面A1C1C.,-17-,题型一,题型二,题型三,证明(1)四边形ABB1A1为正方形,A1A=AB=AC=1,A1AAB.A1AC=90,A1AAC.ABAC=A,A1A平面ABC.又A1A平面A1AC,平面A1AC平面ABC.,-18-,题型一,题型二,题型三,(2)取BC的中点E,连接AE,C1E,B1E.B1C1EC,B1C1=EC.四边形CEB1C1为平行四边形.B1EC1C.C1C平面A1C1C,B1E平面A1C1C,B1E平面A1C1C.B1C1BE,B1C1=BE.四边形BB1C1E为平行四边形.B1BC1E,且B1B=C1E.,-19-,题型一,题型二,题型三,又四边形ABB1A1是正方形,A1AC1E,且A1A=C1E.四边形AEC1A1为平行四边形,AEA1C1.A1C1平面A1C1C,AE平面A1C1C,AE平面A1C1C.AEB1E=E,平面B1AE平面A1C1C.AB1平面B1AE,AB1平面A1C1C.,-20-,题型一,题型二,题型三,1.对命题条件的探索三种途径:(1)先猜后证,即先观察与尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)将几何问题转化为代数问题,探索出命题成立的条件.2.对命题结论的探索方法:从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论.,-21-,题型一,题型二,题型三,例3在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,ABCD,AC=,AB=2BC=2,ACFB.(1)求证:AC平面FBC.(2)求四面体F-BCD的体积.(3)线段AC上是否存在点M,使EA平面FDM?证明你的结论.,(1)证明在ABC中,因为AC=,AB=2,BC=1,所以ACBC.又因为ACFB,BCFB=B,所以AC平面FBC.,-22-,题型一,题型二,题型三,(2)解因为AC平面FBC,所以ACFC.因为CDFC,ACCD=C,所以FC平面ABCD.在等腰梯形ABCD中可得CB=DC=1,所以FC=1.,-23-,题型一,题型二,题型三,(3)解线段AC上存在点M,且M为AC中点时,有EA平面FDM.证明如下:连接CE,与DF交于点N,取AC的中点M,连接MN.如图所示,因为CDEF为正方形,所以N为CE中点.所以EAMN.因为MN平面FDM,EA平面FDM,所以EA平面FDM.所以线段AC上存在点M,使得EA平面FDM成立.,-24-,题型一,题型二,题型三,对点训练3如图,直角梯形ABCD中,ABCD,ADAB,CD=2AB=4,AD=,E为CD的中点,将BCE沿BE折起,使得CODE,其中点O在线段DE内.(1)求证:CO平面ABED.(2)问:CEO(记为)多大时,三棱锥C-AOE的体积最大?最大值为多少?,-25-,题型一,题型二,题型三,(1)证明在直角梯形ABCD中,CD=2AB,E为CD的中点,则AB=DE,又ABDE,ADAB,知BECD.在四棱锥C-ABED中,BEDE,BECE,CEDE=E,CE,DE平面CDE,则BE平面CDE.因为CO平面CDE,所以BECO.又CODE,且BE,DE是平面ABED内两条相交直线,故CO平面ABED.,-26-,题型一,题型二,题型三,-27-,题型一,题型二,题型三,1.三种平行关系的转化方向,如图所示:,-28-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国家能源哈尔滨市2025秋招面试专业追问及参考化学工程岗位
- 乌兰察布市中石化2025秋招笔试综合知识专练题库及答案
- 中国移动红河自治州2025秋招技能类专业追问清单及参考回答
- 中国广电太原市2025秋招笔试模拟题及答案
- 吕梁市中石油2025秋招面试半结构化模拟题及答案油田勘探开发岗
- 大唐电力佳木斯市2025秋招能源与动力工程专业面试追问及参考回答
- 国家能源阳江市2025秋招笔试数学运算题专练及答案
- 榆林市中石油2025秋招面试半结构化模拟题及答案机械与动力工程岗
- 中国广电衢州市2025秋招综合管理类专业追问清单及参考回答
- 中国广电无锡市2025秋招笔试性格测评专练及答案
- 【《企业人才招聘存在的问题与对策》5200字(论文)】
- 我国养老状况课件
- 心脏支架术后康复课件
- 国庆期间保安安全培训课件
- 工程施工山区二级公路施工组织设计
- GB/T 3131-2001锡铅钎料
- GB/T 25775-2010焊接材料供货技术条件产品类型、尺寸、公差和标志
- GB/T 14454.2-2008香料香气评定法
- 《干部履历表》(1999版电子版)
- ISO 9001:2015新版质量管理体系详解与案例文件汇编
- 航天电子电气产品手工焊接工艺设计技术要求
评论
0/150
提交评论