已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章三角形的证明,1等腰三角形(第2课时),学习新知,问题思考,观察后解答下列问题:,(1)你能从图中发现一些相等的线段吗?(2)你能用一句话概括你所得到的结论吗?(3)你能结合图形分别写出已知、求证和证明过程吗?,等腰三角形的性质,例1证明:等腰三角形两底角的平分线相等.,已知:如图所示,在ABC中,AB=AC,BD和CE是ABC的角平分线.求证:BD=CE.,证法1:AB=AC,ABC=ACB(等边对等角).,BD,CE分别平分ABC和ACB,1=ABC,2=ACB,1=2.,ACB=ABC,BC=CB,1=2,BDCCEB(ASA).BD=CE(全等三角形的对应边相等).,在BDC和CEB中,证法2:AB=AC,ABC=ACB.BD,CE分别平分ABC和ACB,,3=ABC,4=ACB,3=4.,在ABD和ACE中,3=4,AB=AC,A=A,ABDACE(ASA).BD=CE(全等三角形的对应边相等).,(补充例题)如图所示,在等腰三角形ABC中,AB=AC.,(1)如果ABD=ABC,ACE=ACB呢?由此,你能得到一个什么结论?(2)如果AD=AC,AE=AB,那么BD=CE吗?如果AD=AC,AE=AB呢?由此,你能得到什么结论?,解:(1)BD=CE.这和证明等腰三角形两底角的平分线相等类似.证明如下:,AB=AC,ABC=ACB(等边对等角).ABD=ABC,ACE=ACB,ABD=ACE.,在BDA和CEA中,ABD=ACE,BA=CA,A=A,BDACEA(ASA).BD=CE(全等三角形的对应边相等).,由此我们可以发现:在ABC中,AB=AC,ABD=ABC,ACE=ACB,就一定有BD=CE成立(n1).,(2)如果AD=AC,AE=AB,那么BD=CE吗?如果AD=AC,AE=AB呢?由此,你能得到什么结论?,在ADB和AEC中,AB=AC,A=A,AD=AE,ADBAEC(SAS).BD=CE(全等三角形的对应边相等).,证明:在ABC中,AB=AC,如果AD=AC,AE=AB,那么BD=CE;如果AD=AC,AE=AB,那么BD=CE.由此我们得到了一个结论:在ABC中,AB=AC,如果AD=AC,AE=AB,那么BD=CE(n1).证明如下:,AB=AC,AD=AC,AE=AB,AD=AE.,等边三角形的性质,定理:等边三角形的三个内角都相等,并且每个角都等于60.,已知:如图所示,在ABC中,AB=AC=BC.求证:A=B=C=60.,证明:AB=AC,B=C(等边对等角).,又AC=BC(已知),A=B(等边对等角).A=B=C.,在ABC中,A+B+C=180,A=B=C=60.,检测反馈,2.(2015衡阳中考)已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11B.16C.17D.16或17,1.等腰三角形的一个角是80,则它顶角的度数是()A.80B.80或20C.80或50D.20,解析:这个角可能是顶角也可能是底角.故选B.,B,解析:分两种情况:当三边长为5,5,6时,周长为16;当三边长为5,6,6时,周长为17.故选D.,D,3.如图所示,在ABC中,AB=AC,DEBC,若ADE=48,则下列结论中不正确的是()A.B=48B.AED=66C.A=84D.B+C=96,B,4.如图所示,在ABC中,AB=AC,ABC的外角DAC=130,则B=.,解析AB=AC,B=C,DAC=130,BAC=50,C=B=65.故填65.,65,5.如图所示,在PBQ中,BP=6,点A,C,D分别在BP,BQ,PQ上,且CDPB,ADBQ,QDC=PDA,则四边形ABCD的周长为.,12,6.如图所示,在等腰三角形ABC中,AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GB-T 39592-2020黄茶加工技术规程》专题研究报告
- 煮茧操作工道德评优考核试卷含答案
- 2025年执业中药师《中药学综合知识》章节试题及答案
- 有色金属冶炼质检员安全检查强化考核试卷含答案
- 落布工岗前技术落地考核试卷含答案
- 《GBT 19142-2016 出口商品包装 通则》专题研究报告
- 互联网网络管理员安全培训强化考核试卷含答案
- 公司舌簧管封装工现场作业技术规程
- 矿山安全设备监测检修工岗位工艺技术规程
- 公司工业清洗工岗位安全技术规程
- 马克思主义与社会科学方法论概述(课件)
- 《饲养家蚕收集我国养蚕的历史资料》跨学科实践主题学习单元教学设计
- 瑞幸咖啡案例分析
- 《模拟刑事法庭》课件
- 机加工零部件质量检验标准
- 土木建筑工程投标书
- 《维护生态平衡》教案
- 浙江省执业医师体检表
- 唐县轩丰建材销售有限公司唐县迷城南沟建筑石料用灰岩矿矿山地质环境保护与土地复垦方案
- 思想道德修养与法律基础第五章课件
- 2021南瑞集团考试真题及答案
评论
0/150
提交评论