




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题3数列一、等差数列1.等差数列的通项公式是什么?如何表示等差数列中任意两项的关系?an=a1+(n-1)d;an=am+(n-m)d.2.等差数列的前n项和公式是什么?它具有什么特点?Sn=na1+d.等差数列的前n项和为关于n的二次函数,且没有常数项.二、等比数列1.等比数列的通项公式是什么?如何表示等比数列中任意两项的关系?an=a1qn-1;an=amqn-m.2.等比数列的前n项和公式是什么?具有什么特点?易忽略点是什么?Sn=当q1时,Sn=-qn,qn的系数与常数项互为相反数.应用等比数列前n项和公式时,应先讨论公式中的公比q是否等于1.3.等差数列的单调性与什么有关?等比数列呢?等差数列的单调性只取决于公差d的正负,而等比数列的单调性既要考虑公比q的取值,又要考虑首项a1的正负.4.等差中项、等比中项的概念是什么?由此可以得到哪些重要的性质?等差中项:若a,M,b成等差数列,则M为a,b的等差中项,且M=.重要性质:已知数列an是等差数列,(1)若m,n,p,qN*,且m+n=p+q,则am+an=ap+aq.(2)an=S2n-1.等比中项:若a,M,b成等比数列,则M为a,b的等比中项,且M2=ab.重要性质:已知数列an是等比数列,若m,n,p,qN*,且m+n=p+q,则aman=ap aq.三、数列求和列举数列求和的方法,各自的注意点是什么?(1)公式法求和:要熟练掌握一些常见数列的前n项和公式.(2)分组求和法:分组求和法是解决通项公式可以写成cn=an+bn形式的数列求和问题的方法,其中an与bn是等差(比)数列或一些可以直接求和的数列.(3)裂项相消法:将数列的通项公式分成两个代数式子的差,即an=f(n+1)-f(n)的形式,然后通过累加抵消中间若干项的求和方法.形如(其中an是公差d0且各项均不为0的等差数列,c为常数)的数列等.用裂项相消法求和时易认为只剩下首尾两项.用裂项相消法求和时要注意所裂式与原式的等价性.附:常见的裂项公式(其中nN*).=-.=.=.=-.=.(4)错位相减法:形如anbn(其中an为等差数列,bn为等比数列)的数列求和,一般分三步:巧拆分;构差式;求和.用错位相减法求和时易漏掉减数式的最后一项.(5)倒序求和法:距首尾两端等距离的两项和相等,可以用此法.一般步骤:求通项公式;定和值;倒序相加;求和;回顾反思.从近三年的高考全国卷试题来看,数列一直是高考的热点,数列部分的题型、难度和分值都保持稳定,考查的重点主要是等差数列及其前n项和、等比数列及其前n项和、数列的通项、数列的前n项和等知识.考查内容比较全面,解题时要注意基本运算、基本能力的运用,同时注意函数与方程、转化与化归等数学思想的应用.一、选择题和填空题的命题特点等差(比)数列的基本运算:a1,an,Sn,n,d(q)这五个量中已知其中的三个量,求另外两个量.已知数列的递推关系式以及某些项,求数列的通项公式和前n项和等.1.(2018全国卷理T4改编)记Sn为等差数列an的前n项和.若3S3=S2+S4,a1=2,则S5=().A.-20B.-10C.10D.20解析设数列an的公差为d,由题意可得3=2a1+d+4a1+d,解得d=-a1.因为a1=2,所以d=-3,所以S5=52+(-3)=-20,故选A.答案A2.(2018全国卷理T14改编)记Sn为数列an的前n项和.若Sn=2an+1,则a6=.解析当n2时,Sn-1=2an-1+1,所以Sn-Sn-1=2(an-an-1),即an=2an-1.又a1=S1=2a1+1,所以a1=-10,所以数列an是以-1为首项,2为公比的等比数列,所以an=-2n-1,a6=-26-1=-32.答案-32二、解答题的命题特点等差(比)数列的基本运算:a1,an,Sn,n,d(q)这五个量中已知其中的三个量,求另外两个量.已知数列的递推关系式以及某些项,求数列的通项公式.已知等差(比)数列的某些项或前几项的和,求其通项公式.等差(比)数列的判断与证明以及等差数列前n项和的最值问题等.1.(2018全国卷文T17改编)已知数列an满足a1=1,nan+1=2(n+1)an,设bn=.(1)证明数列bn是等比数列,并求an的通项公式.(2)求数列an的前n项和Sn.解析(1)由已知条件可得=,即bn+1=2bn.又b1=1,所以bn是首项为1,公比为2的等比数列.所以bn=2n-1,所以an=n2n-1.(2)由(1)可得Sn=a1+a2+an=120+221+322+n2n-1,所以2Sn=121+222+323+n2n,两式相减得-Sn=1+21+22+23+2n-1-n2n=-n2n=2n-1-n2n,所以Sn=(n-1)2n+1.2.(2018全国卷理、文T17改编)记Sn为等差数列an的前n项和,已知a1=-7,a1+a2+a3=-15.(1)求an,Sn;(2)求数列|an|的前n项和Tn.解析(1)设数列an的公差为d,由题意得解得d=2,所以an=2n-9,Sn=n2-8n.(2)当1n4(nN*)时,an0,所以Tn=|a1|+|a2|+|a3|+|a4|+|a5|+|an|=-(a1+a2+a3+a4)+(a5+an)=-S4+(Sn-S4)=Sn-2S4=n2-8n+32.综上所述,Tn=3.(2018全国卷理、文T17改编)在正项等比数列an中,a1=1,a5=4a3.(1)求an的通项公式;(2)记Sn为an的前n项和,证明:an=.解析(1)设数列an的公比为q(q0),由题设得an=qn-1.由已知得q4=4q2,解得q=0(舍去)或q=-2(舍去)或q=2.故an=2n-1.(2)因为an=2n-1,所以Sn=2n-1,所以=2n-1=an.1.等差数列和等比数列的判断方法:判断等差数列和等比数列,可以先计算特殊的几项,观察其特征,然后归纳出等差数列或者等比数列的结论.证明等差数列和等比数列,应该首先考虑其通项公式,利用定义或者等差中项、等比中项来证明.利用通项公式和前n项和公式只是作为判断方法,而不是证明方法.把对数列特征的判定渗透在解题过程中,可以帮助学生拓展思维和理清思路.2.数列通项的求法:(1)公式法:等差数列通项公式;等比数列通项公式. (2)已知Sn(即a1+a2+an=f(n)求an,用作差法:an=(3)已知a1a2an=f(n)求an,用作商法:an=(4)已知an+1-an=f(n)求an,用累加法:an=(an-an-1)+(an-1-an-2)+(a2-a1)+a1(n2,nN*).(5)已知=f(n)求an,用累乘法:an=a1(n2,nN*).(6)已知递推关系式求an,用构
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流行业2025:自动驾驶卡车在物流运输中的智能监控报告
- 2025年学历类自考专业(护理)儿科护理学(二)-医学心理学参考题库含答案解析(5套)
- 2025年学历类自考专业(护理)-儿科护理学(一)参考题库含答案解析(5套)
- 2025年学历类自考专业(建筑工程)计算机基础与程序设计-混凝土结构设计参考题库含答案解析(5套)
- 2025年智能机器人研发项目申请报告
- 基于2025年的城市地下空间开发利用可行性及城市交通拥堵治理研究报告
- 深度解析2025年医药企业研发外包(CRO)服务标准化与行业自律报告
- 2025年学历类自考专业(小学教育)小学教育心理学-心理卫生与心理辅导参考题库含答案解析(5套)
- 2025年学历类自考专业(学前教育)幼儿园教育活动设计与组织-学前特殊儿童教育参考题库含答案解析(5套)
- 2025年学历类自考专业(学前教育)学前教育科学研究-学前教育研究方法参考题库含答案解析(5套)
- 水利安全风险防控“六项机制”与安全生产培训
- 基于遥感生态指数的柴达木盆地生态环境质量时空演变分析
- 网络安全运维方案设计
- TCPQSXF006-2023消防水带产品维护更换及售后服务
- QGDW12505-2025电化学储能电站安全风险评估规范
- 线性代数教案设计全(同济大学第六版)
- 2025至2030中国萤石市场供给前景预测及发展战略规划研究报告
- 完工清账协议书格式模板
- 小学生地质科普课件
- 私募股权融资流程与风险管理
- 云上贵州大数据集团笔试题目
评论
0/150
提交评论