




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,双曲线及其标准方程,回顾:椭圆的定义,平面内与两定点F1、F2的距离的和等于常数2a(2a|F1F2|)的点的轨迹.,温故知新,类比思考,平面内与两定点F1、F2的距离的差等于常数的点的轨迹是什么呢?,1.取一条拉链,拉开它的一部分;2.在拉开的两边各选择一点,分别固定在点F1,F2上;3.把笔尖放在点M处,随着拉链逐渐拉开或者闭拢,画出一条曲线.,实验操作,画双曲线,实验操作,如图(A),,|MF1|-|MF2|=常数,如图(B),,|MF2|-|MF1|=常数,上面两条合起来叫做双曲线,由可得:,|MF1|-|MF2|=常数(差的绝对值),实验操作,与两个定点F1,F2的距离的差的绝对值等于常数的点的轨迹.,平面内,2a,(小于|F1F2|),记作2c,形成概念,双曲线的定义:,两个定点F1,F2叫做双曲线的焦点,|F1F2|叫做双曲线的焦距,,定义,椭圆,双曲线,建系、设点,列式、代入,化简,平面内到两定点距离等于常数(大于两定点距离)的点的轨迹,以F1,F2所在的直线为x轴,线段F1F2的中点为原点建系,设M(x,y),数,形,距离公式,双曲线标准方程,以F1,F2所在的直线为x轴,线段F1F2的中点为原点建系,设M(x,y),推理论证,找等量关系,整理得,类比,先移项后平方,推理论证,双曲线的标准方程:,焦点在x轴上的双曲线的标准方程:,焦点在y轴上的双曲线的标准方程:,标准方程特点:左边是减法,分子是x2,y2,分母是a2,b2,右边是1.,判断焦点位置方法:化为标准方程后,x2,y2前的系数哪个为正,焦点就在相应坐标轴上.,2.已知双曲线的焦点在坐标轴上,焦距为20,a=8,求双曲线的标准方程.,课堂练习,分类讨论,解:由题意知,若双曲线的焦点在x轴上,设它的标准方程为:,2c=20,c=10,又a=8,b2=10282=36,所求的标准方程为,所求双曲线的标准方程为,同理,焦点在y轴上的双曲线标准方程为:,求双曲线的标准方程(1)首先要判断焦点位置,设出标准方程(定位)(2)根据已知条件求a,b(定量),求:(1)双曲线的标准方程.,(2)双曲线上一点,若|PF1|=10,则|PF2|=_,已知双曲线两个焦点分别为F1(-5,0),F2(5,0),双曲线上一点P到F1,F2距离差的绝对值等于6,,(2)|PF1|-|PF2|=6,|PF1|=10,,|PF2|=4或16,解:(1)双曲线的焦点在x轴上,设它的标准方程为:,2a=6,2c=10,a=3,c=5.b2=5232=16,所求双曲线的标准方程为,例题讲解,例1,思考:,若把例1中的绝对值去掉,则点P的轨迹是什么?求点P的轨迹方程.,F(c,0),ca0,a,b大小不定,c2=a2+b2,ab0,a2=b2+c2,双曲线与椭圆之间的区别与联系,|MF1|MF2|=2a(2a|F1F2|),椭圆,双曲线,F(0,c),思想:,类比思想,数形结合思想,方法:,定义法,归纳总结,分类讨论思想,平面内与两定点的距离的差等于常数2a(小于|F1F2|)的点的轨迹是什么?平面内与两定点的距离的差的绝对值等于常数2a(等于|F1F2|)的点的轨迹是什么?平面内与两定点的距离的差的绝对值等于常数2a(大于|F1F2|)的点的轨迹是什么?,课本P551(1)()(3),3,拓展思考,作业布置,(一),(二)已知平面内一动点P到两个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东抽风罩施工方案
- 船舶坞修施工方案
- 中国邮政2025济宁市秋招揽投部储备干部岗位高频笔试题库含答案
- 盐城建湖县中烟工业2025秋招面试典型题库含参考答案
- 其他形式就业协议书4篇
- 彭州营销咨询方案
- 房地产项目需要应急预案吗
- 2025年度办公室耗材批量采购及仓储管理合同
- 扬州咨询报价方案
- 民间借贷抵押合同范本
- 灵芝培训课件
- 环形开挖预留核心土法
- DLT 572-2021 电力变压器运行规程
- 妇科医生进修汇报课件
- 《无线通信基础及应用》课件第3章
- 《科室管理方案》课件
- 农业机械操作安全的培训课程
- 综合医院危重患者院内转运发生意外情况应急预案
- 电镀行业环境保护现状课件
- 烹饪美学高职全套教学课件
- 最全看图猜成语 课件
评论
0/150
提交评论