投资学第5章利率史与风险溢价1 studentPPT课件_第1页
投资学第5章利率史与风险溢价1 studentPPT课件_第2页
投资学第5章利率史与风险溢价1 studentPPT课件_第3页
投资学第5章利率史与风险溢价1 studentPPT课件_第4页
投资学第5章利率史与风险溢价1 studentPPT课件_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.,投资学第5章,历史数据中的收益与风险IntroductiontoRisk,Return,andtheHistoricalRecord,.,2,本章主要内容利率水平的确定-InterestRateDeterminants期望收益与波动性ExpectedReturnanditsVariance风险价值ValueatRisk,.,3,5.1利率水平的确定,利率水平的决定因素:资金供给(居民)-Households资金需求(企业)-Businesses资金供求的外生影响(政府)-GovernmentsNetSupplyand/orDemandFederalReserveActions,.,4,5.1.1实际利率(realinterestrate)与名义利率(nominalinterestrate),消费者物价指数(CPI,consumerpriceindex)Nominalinterestrate(R):GrowthrateofyourmoneyRealinterestrate(r):Growthrateofyourpurchasingpower,.,5,5.1.2实际利率均衡-EquilibriumRealRateofInterest,四因素:供给、需求、政府行为和通胀率,资金,均衡资金借出,均衡的真实利率,利率,E,E,需求,供给,利率,均衡的真实利率,利率,均衡资金借出,均衡的真实利率,利率,资金,均衡资金借出,均衡的真实利率,利率,.,6,5.1.3名义利率均衡-EquilibriumNominalRateofInterest,费雪方程(Fisherequation)含义:名义利率应该随预期通胀率的增加而增加Astheinflationrateincreases,investorswilldemandhighernominalratesofreturnIfE(i)denotescurrentexpectationsofinflation,thenwegettheFisherEquation:Nominalrate=realrate+inflationforecast,.,7,5.1.4税收与实际利率,.,8,5.2持有期收益率,ZeroCouponBond,Par=$100,T=maturity,P=price,rf(T)=totalriskfreereturn,.,9,Example5.2AnnualizedRatesofReturn,.,10,Equation5.7实际年利率-EAR,Effectiveannualratedefinition:percentageincreaseinfundsinvestedovera1-yearhorizon,.,11,5.2.1年百分比利率,.,12,Equation5.8年百分比率-APR,.,13,Table5.1APRvs.EAR,.,14,5.2.2连续复利收益率,当T趋于无限小时,可得连续复利(continuouscompounding)概念,.,15,Table5.2StatisticsforT-BillRates,InflationRatesandRealRates,1926-2009,.,16,Figure5.3InterestRatesandInflation,1926-2009,.,17,Figure5.4NominalandRealWealthIndexesforInvestmentinTreasuryBills,1966-2005,.,18,5.4风险和风险溢价riskpremium,5.4.1持有期收益holdingperiodreturn股票收益包括两部分:红利收益(dividends)与资本利得(capitalgains)持有期收益率(holding-periodreturn),.,19,RiskandRiskPremiums,HPR=HoldingPeriodReturnP0=BeginningpriceP1=EndingpriceD1=Dividendduringperiodone,RatesofReturn:SinglePeriod,.,20,EndingPrice=110BeginningPrice=100Dividend=4HPR=(110-100+4)/(100)=14%,RatesofReturn:SinglePeriodExample,.,21,5.4.2期望收益expectedreturn与标准差standarddeviation:E-V方法,WearenotsureabouttheeventualHPR,sowehavetoknowtheProbabilityDistributionofthefutureoutcome.WewillcharacterizePDintermsoftheirexpectedreturnE(r)andtheirstandarddeviation.,.,22,StateProb.ofStaterinStateExcellent.250.3100Good.450.1400Poor.25-0.0675Crash.05-0.5200,E(r)=(.25)(.31)+(.45)(.14)+(.25)(-.0675)+(0.05)(-0.52)E(r)=.0976or9.76%,ScenarioReturns:Example,.,23,Variance(VAR):,VarianceandStandardDeviation,StandardDeviation(STD):,.,24,ScenarioVARandSTD,ExampleVARcalculation:2=.25(.31-0.0976)2+.45(.14-.0976)2+.25(-0.0675-0.0976)2+.05(-.52-.0976)2=.038ExampleSTDcalculation:,.,25,例:假定投资于某股票,初始价格100美元,持有期1年,现金红利为4美元,预期股票价格由如下三种可能,求其期望收益和方差。,.,26,=4500.5=21.2132,.,27,5.4.3超额收益与风险溢价RiskandRiskpremiums,Example:rf=6%,rstockA=14%,sowhatis8%whichequalstorstockA-rf?rstockA-rf=excessreturn,orexcessreturn=actualreturnriskfreerate.Theriskpremiumistheexpectedvalueoftheexcessreturn,thenE(r)-rf=riskpremium.WemeasurethereturnofaninvestmentwithitsE(r),wemeasuretheriskofaninvestmentwithitsriskpremiumsstandarddeviation.,.,28,5.4.3超额收益与风险溢价RiskandRiskpremiums,例:上例中我们得到股票的预期回报率E(r)为14,若无风险收益率为rf8。初始投资100元于股票,其风险溢价(E(r)-rf)为6元,作为其承担风险(标准差为21.2元)的补偿。投资者对风险资产投资的满意度取决于其风险厌恶(riskaversion)程度,.,29,5.5历史收益率时间序列分析,5.5.1时间序列与情景分析WedonotknowthePDoffutureoutcomes,aswellastheirE(r)and.Wemustinferfromitshistoryortimeseriesinordertoestimatethem.5.5.2期望收益与算术平均收益率的算术平均数arithmeticaverageofratesofreturn:,.,30,5.5.2几何收益率GeometricAverageReturn,TV=投资终值(TerminalValueoftheInvestment),g=几何平均收益率(geometricaveragerateofreturn),.,31,5.5.4方差与标准差,.,32,5.5.5报酬-风险比率(夏普比率)TheReward-to-Volatility(Sharpe)Ratio,Wewouldliketoknowthetrade-offbetweenreward(theriskpremium)andrisk(asmeasuredbystandarddeviationorSD),.,33,5.6正态分布-TheNormalDistribution,Investmentmanagementiseasierwhenreturnsarenormal.,.,34,5.6正态分布-TheNormalDistribution,.,35,NormalityandRiskMeasures,Whatifexcessreturnsarenotnormallydistributed?StandarddeviationisnolongeracompletemeasureofriskSharperatioisnotacompletemeasureofportfolioperformanceNeedtoconsiderskewandkurtosis,.,36,5.7偏离正态,偏度,亦称三阶矩(third-ordermoments)峰度:,.,37,图5.5A正态与偏度分布(mean=6%SD=17%),.,38,图5.5B正态与厚尾分布(mean=.1,SD=.2),.,39,ValueatRisk(VaR),AmeasureoflossmostfrequentlyassociatedwithextremenegativereturnsVaRisthequantileofadistributionbelowwhichliesq%ofthepossiblevaluesofthatdistributionThe5%VaR,commonlyestimatedinpractice,isthereturnatthe5thpercentilewhenreturnsaresortedfromhightolow.,.,40,ExpectedShortfall(ES),Alsocalledconditionaltailexpectation(CTE)MoreconservativemeasureofdownsideriskthanVaRVaRtakesthehighestreturnfromtheworstcasesEStakesanaveragereturnoftheworstcases,.,41,CovarianceandCorrelation,PortfolioriskdependsonthecorrelationbetweenthereturnsoftheassetsintheportfolioCovarianceandthecorrelationcoefficientprovideameasureofthewayreturnsoftwoassetsvary,.,42,Two-SecurityPortfolio:Return,.,43,Two-SecurityPortfolio:Risk,.,44,Two-SecurityPortfolio:Risk,.,45,Two-SecurityPortfolio:Risk,.,46,5.8股权收益与长期债券收益的历史记录,5.8.1平均收益与标准差基本结论:高风险、高收益,.,47,表5.3各个时期的资产历史收益率1926-2005,.,48,图5.61926-2005年历史收益率,.,49,5.8.2风险资产组合的其他统计量5.8.3夏普比率5.8.4时间序列相关性5.8.5偏度与峰度5.8.6历史风险溢价的估计5.8.7全球历史数据,.,50,表5.4资产的历史超额收益率1926-2005,.,51,图5.7世界名义和实际股权收益率1900-2000,.,52,图5.8世界股权和债券实际收益率的年标准差1900-2000,.,53,5.9长期投资,.,54,5.9.1长期投资的风险与对数正态分布,连续复利的收益率若呈正态分布,则实际的持有期收益率为对数正态分布终值为:,.,55,5.9.2夏普比率回顾,夏普比率的时间维度5.9.3长期未来收益率模拟5.9.4长期预测,.,56,图5.10AnnuallyCompounded,25-YearHPRsfromBootstrappedHistoryandANormalDistribution(50,000样本),.,57,图5.11AnnuallyCompounded,25-YearHPRsfromBootstrappedHistory(50,000Observation),.,58,图5.12WealthIndexesofSelectedOutcomesofLargeStockPor

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论