已阅读5页,还剩48页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二节Lesbesgue积分的定义及性质,第五章积分理论,1.积分的定义,设是(Ei可测且两两不交)上非负简单函数,定义为在E上的Lebesgue积分,非负简单函数的积分,例:若E1,E2,En是0,1中的可测集,0,1中每一点至少属于上述集合中的k个(kn),则在E1,E2,En中必有一个点集的测度大于或等于k/n,非负可测函数的积分,若f(x)是E上的可测函数,则f(x)总可表示成一列简单函数的极限,而且还可办到,积分的性质,零集上的任何函数的积分为0,例设fn(x)为E上非负可测函数列,,1.Levi逐项积分定理,只要证明大于等于,但一般而言fn(x)不会跑到f(x)上方,所以我们有必要先把f(x)下移一点。,若fn(x)为E上非负可测函数列,,说明:小于等于显然成立,因为fn(x)总在f(x)的下方,Levi逐项积分定理的证明,引理1:设En是递增集列,是Rn上的非负可测简单函数,则,引理2:设f(x)是E上的非负可测函数,A是E中可测子集,则,证明:由条件知fn(x)为E上非负可测函数递增列,,有定义,且从函数列的渐升性知道,下证大于等于号,Levi逐项积分定理的证明,证明:令c满足0c1,是Rn上的非负可测简单函数,且,则En是递增集列,,由引理1知,Levi逐项积分定理的证明,再由的积分定义知,于是从(应用引理2),注:Levi定理的重要性在于对非负上升可测函数列,其极限运算与积分运算的次序可以交换。而任何非负可测函数可由上升的非负简单函数列来逼近,因此非负可测函数的积分性质可通过逼近方式从简单可测函数的积分性质来获得。,2.Lebesgue逐项积分定理(级数形式),然后利用Levi逐项积分定理即可,对应于测度的可数可加性,若fn(x)为E上非负可测函数列,则,对比:积分的线性(有限个函数作和),4.Fatou引理,若fn(x)为E上非负可测函数列,则,一般可测函数的积分,积分的几何意义:,注:当有限时,称f(x)在E上L可积,(要求不同时为)为f(x)在E上的Lebesgue积分(有积分),设f(x)为E上的可测函数,定义,积分的性质,1)零集上的任何函数的积分为0,(2),积分的绝对连续性,说明:若|f(x)|M,则只要取=/M即可,所以我们要把f(x)转化为有界函数。,若f(x)在E上可积,则及任何可测子集有,即:当积分区域很小时,积分值也很小.,积分的绝对连续性的证明,证明:由于f(x)可积,故|f(x)|也可积,故对任意,存在E上的简单函数(x),,使在E上,由于(x)为简单函数,故存在M,使得|(x)|M,例设0,1上的函数f(x)在Cantor集P上定义为0,在Cantor集余集中长度为1/3n的构成区间上定义为n(n=1,2,3,),求f(x)在0,1上的Lebesgue积分值,解:令Gn为Cantor集P的余集中长度为1/3n的构成区间的并,由条件知f(x)是0,1上的非负可测函数,根据积分的可数可加性知,5.Lebesgue控制收敛定理,证明:显然f(x)为E上可测函数(可测函数列的极限函数是可测函数),设fn(x)为E上可测函数列,a.e.于E,且存在非负可积函数F(x),使得|fn(x)|F(x)a.e.于E,,且由|fn(x)|F(x)a.e.于E,知|f(x)|F(x)a.e.于E,所以fn(x),f(x)都为E上可积函数,则f(x)在E上可积且,由|fn(x)|F(x)a.e.于E,知F(x)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物业绿化铺砖合同范本
- 茶叶地摊进货合同范本
- 直播托管服务合同范本
- 绿道工程劳务合同范本
- 进口代理销售合同范本
- 物业管理合同中止协议
- 货物运输赊帐合同范本
- 酒店合作模式合同范本
- 人教鄂教版 (2017)三年级上册5 盐和糖的溶解第二课时教学设计
- 2025年特岗音乐创编题库及答案
- 个人贷款转贷协议书
- 强电工程施工组织设计方案
- 传播学概论课件
- 2024年郑州财税金融职业学院单招职业适应性测试题库及答案详解1套真题题库
- 全国大学生职业规划大赛《智慧健康养老服务与管理》专业生涯发展展示【高职(专科)】
- 2025-2026学年人教版高一化学上学期期中模拟卷(原卷及解析)
- 精神分裂症典型症状及精神分裂症心理护理技巧培训
- 2025年公务员多省联考《申论》真题(安徽B卷)及答案解析
- GB/T 46203-2025科研用生物试剂分类及代码
- 神经松解术护理知识培训课件
- 企业招聘渠道优化与效果分析
评论
0/150
提交评论