34整式的加减第四课时添括号法则_第1页
34整式的加减第四课时添括号法则_第2页
34整式的加减第四课时添括号法则_第3页
34整式的加减第四课时添括号法则_第4页
34整式的加减第四课时添括号法则_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.4整式的加减,第四课时添括号法则,讲解点1:添括号法则,精讲:,法则:所添括号前面是“+”号,括到括号里的各项都不改变符号;所添括号前面是“-”号,括到括号里的各项都要改变符号;例如:a+b+c=a+(b+c)a-b-c=a-(b+c),一、双基讲练,对添括号法则的理解及注意事项如下:,(1)添括号是添上括号和括号前面的符号。也就是说,添括号时,括号前面的“+”或“-”也是新添的不是原来多项式的某一项的符号“移”出来的。,(2)添括号的过程与去括号的过程正好相反,添括号是否正确,可用去括号检验。,总之。无论去括号还是添括号,只改变式子的形式,不改变式子的值,这就是多项式的恒等变形。,“负”变“正”不变!,典例,1.在下列各式的括号内填上适当的项:,(1)x3-3x2y+3xy2-y3=x3+()(2)2-x2+2xy-y2=2-(),评析:根据添括号法则,若括号前是“+”,括到括号里的各项都不变号,即保持原来的符号不变,如果第(1)小题。如果括号前是“-”号,括到括号里的各项都要变号,即“+”变“-”,“-”变“+”,如第(2)小题。注意“各项”是指括号里面“所有的项”。,-3x2y+3xy2-y3,x2-2xy+y2,2.判断下列添括号是否正确(正确的打“”,错误的打“”),(1)m-n-x+y=m-(n-x+y)()(2)m-a+b-1=m+(a+b-1)()(3)2x-y+z-1=-(2x+y-z+1)()(4)x-y-z+1=(x-y)-(z-1)(),3.不改变代数式a2-(2a+b+c)的值,把它括号前面的符号变为相反的符号,应为(),(A)a2+(-2a+b+c)(B)a2+(-2a-b-c)(C)a2+(-2a)+b+c(D)a2-(-2a-b-c),评析:此题既要用去括号,又要用添括号法则,即先去括号,再添括号,然后选择正确答案。,(B),讲解点2:添括号法则的应用,精讲:,添括号一个最简单的应用就是简便计算,根据加法的交换律和结合律,把一些特殊的项括到括号里先计算,从而使整个式子的计算大为简便。另外还可以按照题目的要求,把多项式中具有某些特征的项重新排列或分组,达到预定的要求,此时就要添括号了。,典例,在多项式m4-2m2n2-2m2+2n2+n4中,添括号:(1)把四次项结合,放在前面带有“+”号的括号里;(2)把二次项结合,放在前面带有“-”号的括号里。,评析:此答案不唯一,除以上两种外,还有其他结果,但不论哪种结果,必须符合题目的要求。,解:(1)m4-2m2n2-2m2+2n2+n4=(m4-2m2n2+n4)-2m2+2n2或者m4-2m2n2-2m2+2n2+n4=-2m2+2n2+(m4-2m2n2+n4)(2)m4-2m2n2-2m2+2n2+n4=m4-2m2n2+n4-(2m2-2n2)或者m4-2m2n2-2m2+2n2+n4=-(2m2-2n2)+m4-2m2n2+n4,二、综合题精讲,典例,已知2x+3y-1=0,求3-6x-9y的值。,解:2x+3y-1=0,2x+3y=1。3-6x-9y=3-(6x+9y)=3-3(2x+3y)=3-31=0答:所求代数式的值为0。,评析:学习了添括号法则后,对于某些求值问题灵活应用添括号的方法,可化难为易。如本题,虽然没有给出x、y的取值,但利用添括号和整体代入,求值问题迎刃而解。注意体会和掌握这种方法。,思考:把多项式x3-6x2y+12xy2-8y3+1,写成两个整式的和,使其中一个不含字母x。,三、易错题精讲,典例,已知A=4x2-4xy+y2,B=x2+xy-5y2,求A-B。,评析:本题产生错误的原因是把A、B代入所求式子时,丢掉了括号,导致后两项的符号错误。因为A、B表示两个多项式,它是一个整体,代入式子时必须用括号表示,尤其是括号前面是“-”时,如果丢掉了括号就会发生符号错误,今后遇到这类问题,一定要记住“添括号”。,错解:A-B=4x2-4xy+y2-x2+xy-5y2=3x2-3xy-4y2,正解:A-B=(4x2-4xy+y2)-(x2+xy-5y2)=4x2-4xy+y2-x2-xy+5y2=3x2-5xy+6y2,思考:求多项式x2-7x-2与-2x2+4x-1的差。,四、妙法揭示,典例,设x2+xy=3,xy+y2=-2,求2x2-xy-3y2的值。,解:x2+xy=3,2(x2+xy)=6,即2x2+2xy=62x2-xy-3y2=2x2+2xy-3xy-3y2=(2x2+2xy)-(3xy+3y2)=(2x2+2xy)-3(xy+y2)=6-3(-2)=6+6=12,评析:利用所给条件,对多项式进行拆项、重新分组是解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论