




已阅读5页,还剩61页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,第一期绿带考题解答,1、(4分)假设你收集的数据呈正态分布,此数据的平均值为100,标准差为10,请问:大于20的数据大约占所有数据多少百分比?100%大于120的数据大约占所有数据多少百分比?2.3%(2.5%也对),1、(4分)假设你收集的数据呈正态分布,此数据的平均值为100,标准差为10,请问:大于20的数据大约占所有数据多少百分比?100%大于120的数据大约占所有数据多少百分比?2.3%(2.5%也对),2、(3分)如果一个流程的DPMO为100,000,则该流程介于2Sigma到3Sigma之间,解析:DPU、DPO和DPMO每单位缺陷数(DPU)是样本中的缺陷数除以抽样的单位数得出的结果。每机会缺陷数(DPO)是样本中的缺陷数除以缺陷机会总数得到的结果。每百万机会缺陷数(DPMO)是样本中的缺陷数除以缺陷机会总数再乘以一百万得到的结果。,值百万分之不良率(PPM)2308,537366,80746,2104.51,300523363.4,3、(6分)请评估以下流程的精确度与准确度,以及以下流程应如何进行改善?,4、1)(2分)流程行为图中的控制上下线是谁决定的?流程本身2)(2分)制程能力分析中的规格上下线应该是参酌谁的意见后决定的?客户,解析:UCL/LCL:控制上下线USL/LSL:规格上下线,5、1)(2分)GageR&R是测量系统准确与否的研究?否(2分)GageR&R分析的两大指标是什么?GR&R%与精密度与公差比(precisiontotoleranceratio)(2分)一般工业界,以上两个指标的合格标准是多少?均为30%,解析:1)MSAGR&R%;MSA准确性+精密性;准确性偏倚+稳定性+线性;精密性重复性+再现性GR&R%;,6、(8分)请打开Excel檔KingFaGBTest的工作表:“GRR”,这是个有关连续型数据GaugeR&R的问题。假设客户要求的目标是365,规格上限是390,规格下线是340,请问:,1)这个测量系统%R&R是多少?23.7%2)这个测量系统P/Tratio是多少?41.96%(或36.02%)3)总体而言此测量系统可否接受?不能接受(因为P/Tratio超过30%)4)若要改善此测量系统,应从何处着手?测量仪器的重复性(repeatability),7、(10分)请打开Excel檔KingFaGBTest的工作表:“CHICopterCapability”这是一家直升机公司的飞行数据,有六个月飞行时间的抽样数据。客户要求的飞行时是不可少于20分钟,不可高于30分钟,目标25分钟,请问1)相对于客户的要求而言,这家直升机公司的飞行能力为何?2)你觉得这家直升机公司的飞行能力好不好?如果是不好的话,问题出在那里?该如何改善?,相对于客户的要求而言,这家直升机公司的飞行能力为何?Pp:0.82Ppk:0.67所以相对于客户的要求而言,这家直升机公司的飞行能力不好2)你觉得这家直升机公司的飞行能力好不好?如果是不好的话,问题出在那里?该如何改善?飞行能力不好。飞行时间的变异太大。改善方法为利用层别法找出关键因子以减少飞行时间变异。,8、(6分)请打开Excel檔KingFaGBTest的工作表“OperationTime”,Bob,Jane,Walt三人都是某机台的操作员。工作表中是他们在一段时间内贴一块背光板所需时间的统计。请问三人中,谁的操作速度最慢?谁最快?,Walt最慢;BobandJane一样快,他们俩的时间无统计上明显的差异。,9.(7分)在调阅一些历史数据后,您进行了线性回归分析,MINITAB结果如下:PredictorCoefStDevTPConstant12.75720.502125.410.000 x0.294970.032029.210.000S=0.9771R-Sq=85.0%R-Sq(Adj)=84.0%AnalysisofVarianceSourceDFSSMSFPRegression180.99980.99984.850.000Residuals1514.3200.955Lackoffit1311.5400.8881PureError22.7801.390Total1695.319,1)(2分)请写出该回归方程式:y=12.7572+0.29497X,2)(3分)请画出该回归线:,3)(2分)因子x解释了多少比例的变异?85%(84%也对),10.(4分)一旦x确定后,最关键的控制步骤是:a.建立针对y的控制图b.建立一个控制计划,来持续检测yc.建立计划来持续监控xd.建立新的SOP来调整y的变化e.无法判断,11.(4分)在标准控制图中,把上下控制线从三个标准差的位置移到六个标准差的位置时,其结果是:a.增加了发生TypeIerror的可能性b.增加了发生TypeIIerror的可能性c.使流程能在更长时间内可控d.构建一个更加稳定的流程e.无法判断,12.(4分)降温工序中,水温是控制y的重要因子。X的目标值设定在70度,但是上个月的平均值比设定值低2度。水温通过四个独立地点测量得到,这四个测量点所得数据标准差的历史平均值是1.2度。最适合用来定期测量水温的控制图是:a.X-bar&R/Sb.CUSUMc.RunChartd.IndividualXandMRe.无法判断,13.(4分)现有资源总共只够做80次实验来研究某流程。则以下方案中,哪一个最适合来做初步实验?a.26全因子实验b.26-2部分因子实验c.36-3部分因子实验d.34全因子实验e.无法判断,14.(6分)某重要y的目标值是250,上限300,下限200。y的量测系统的标准差是2。因子x1和x2被发现是y的显著因子,其模式是y60+20 x1+5x2。目前x2设定为6,且该设定没有变异。假设因子x1的量测系统没有可以感知的量测错误时,则:1)通常一个好的量测系统,y的GR&R%大约是多少?a.2%b.10%c.25%d.50%e.无法判断,2)因子x1(针对上题中的y而言)的目标值应设定为:8,15.(4分)右方的控制图来自对一个流程的控制。对该控制图最好的解释是:a.流程稳定,流程能力b.流程很奇怪,但流程能力佳c.控制上下限算错了d.规格上下限应该更严格些e.无法判断,16.(4分)我们设计了一个26-2IV的部分因子实验,在该实验中会产生一些主效应和交互作用的混淆。以下哪种说法最好地描述了这种混淆?a.每一个混淆组合其实都包含了两个项(terms)b.每一个混淆组合都包含了四个项(terms)c.每一个主效应和两阶交互作用相混淆d.每一个主效应和四阶交互作用相混淆e.无法判断,17.(4分)右图是对因子A和B进行实验后的结果,以下哪种说法是正确的?a.效应是线性的b.因子A和B之间可能有交互作用c.从统计上来看,B2水平显著比B1和B3高d.没有进行足够的重复实验,所以无法下结论e.无法判断,18.(6分)利用卡方检定来检视A与B供货商之间的质量表现有无统计上显著的差异,卡方值是多少?32.693A与B供货商之间的质量表现有无统计上显著的差异?有,19.(6分)两家供货商提供物料之质量特性数据显示如下:供货商甲供货商乙85.289.087.389.492.590.880.884.384.888.288.1我们想了解该两家供货商所提供之物料的均值是否相同。1)、请问你建议使用那种检定方法?2-samplet-test2)、请你用MINITAB执行该检定方法。P-value=0.3493)、请问你的结论是什么?两家供应商所提供的物料均值相同,1)、请问你建议使用那种检定方法?2-samplet-test,1)、请问你建议使用那种检定方法?2-samplet-test2)、请你用MINITAB执行该检定方法。P-value=0.3493)、请问你的结论是什么?两家供应商所提供的物料均值相同,知识点概要,流程图,因果矩阵图,FMEA,统计概述,离散性MSA,连续性MSA,流程行为图(控制图),过程能力分析,假设检验,比较检验,参数假定检验,参数表示为总体假定了分布。通常,在执行数据是来自某个分布(通常为正态分布)的样本的假设检验时做出假定。非参数表示没有为总体假定具体分布。参数检验的优势在于,如果假设成立,则功效(即在H0为假时拒绝该假设的概率)比相同样本大小的对应非参数检验的功效高。非参数检验结果在遇到违反假设的情况时更健壮。因此,如果对于基于参数模型的检验违反了假设,则基于参数检验p值的结论可能比基于非参数检验p值的结论更具误导性。t检验对一个或两个正态分布总体的平均值(双样本时还有方差)的假设检验。单样本Z检验检验正态总体均值是否等于目标值。F检验F检验通常用于确定两个组的方差是否相等。卡方检验一个假设检验族,用于在原假设下将数据的实测分布与其预期分布进行比较。,非参数检验,单样本Wilcoxon:-执行中位数的单样本Wilcoxon符号秩检验,并计算相应的点估计和置信区间。使用此检验作为单样本Z检验和单样本t检验的非参数备择。Mann-Whitney:-执行两个总体中位数相等性的假设检验,并计算相应的点估计和置信区间。使用此检验作为双参数t检验的非参数备择。Kruskal-Wallis:-对单因子设计(两个或多个总体)执行总体中位数相等性的假设检验。此检验是泛化的Mann-Whitney检验所使用过程,并(类似于Mood中位数检验)为单因子方差分析提供非参数备择。Kruskal-Wallis检验寻找总体的中位数之间的差异。对于分析来自许多分布的数据(包括来自正态分布的数据),Kruskal-Wallis检验比Mood中位数检验更有效(平均起来,置信区间较窄),但对于异常值的健壮性则较差。Mood中位数检验:-执行单因子设计中总体中位数相等性的假设检验。Mood中位数检验,像Kruskal-Wallis检验一样,为常规的单因子方差分析提供非参数备择。Mood中位数检验有时也称为中位数检验或符号分值检验。Mood中位数检验在数据中遇到异常值和误差时健壮,特别适用于分析的初级阶段。Mood中位数检验在遇到异常值时比Kruskal-Wallis检验更健壮;但在分析来自许多分布的数据(包括来自正态分布的数据)时,功效则较差(平均来说,置信区间较宽)。Friedman:-执行随机化区组试验的非参数分析,并因此为双因子方差分析提供备择。随机化区组试验是泛化的配对试验。Friedman检验是泛化的带有处理无效应的原假设的配对符号检验。此检验要求每个处理-区组的组合有且只有一个观测值。,独立性检验,卡方检验一个假设检验族,用于在原假设下将数据的实测分布与其预期分布进行比较。,样本大小计算,包含知识点:样本大小,风险,检定力,标准差等,样本大小计算,包含知识点:样本大小,风险,检定力,标准差等,回归分析Regression,方差分析,方差分析表的组成:来源-表明变异源,来自因子、交互作用或误差。其合计是所有来源的汇总。DF-每个来源的自由度。如果因子具有三个水平,则自由度为2(n-1)。如果总共有30个观测值,则总自由度为29(n-1)。SS-组间平方和(因子)以及组内平方和(误差)。MS-平方和除以自由度得出的均方。F-通过将因子MS除以误差MS来计算;可以将此比率与在表中找到的临界F进行比较,或者可以使用p值来确定某个因子是否显著。P-用于确定某个因子是否显著;通常与alpha值0.05进行比较。如果p值低于0.05,则该因子是显著的。单因子方差分析表假设您运行一个方差分析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论