




已阅读5页,还剩96页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
液/液界面电化学及电分析化学简介,邵元华,北京大学化学与分子工程学院分析化学研究所,1.液/液界面电化学的发展历史2.液/液界面电化学的基本原理3.液/液界面电化学的主要研究方法及仪器设备4.液/液界面电化学的现状5.液/液界面电化学的未来展望,主要内容,参考书和文献:1.液/液界面电化学,P.Vanysek著,罗颖华译,汪尔康审校,吉林大学出版社,1987年2.H.H.GiraultandD.J.Schiffrin,inElectroanalyticalChemistry,A.J.Bard.,Ed.;Vol:15,p.1,MarcelDekker,NewYork,19893.H.H.Girault,inModernAspectsofElectrochemistry,J.O.Bockris,B.E.Conway,R.E.White,Eds.;PlenumPress,NewYork,1993,Vol:25,p.14.J.Koryta,Electrochemicalpolarizationphenomenaattheinterfaceoftwoimmiscibleelectrolytesolutions.ElectrochimicaActa,24(1979)293-3005.J.Koryta,Electrochemicalpolarizationphenomenaattheinterfaceoftwoimmiscibleelectrolytesolutions.II.Progresssince1978.ElectrochimicaActa,29(1984)445-4526.VolkovAG,DeamerDW.Liquid-liquidinterfaces.TheoryandMethods.California:CRCPress,1996.7.VolkovAG,DeamerDW.LiquidinterfacesinChemistryandBiologyJohnWiley,NewYork,1998.,1.BriefIntroductionofElectrochemistryatLiquid/LiquidInterfaces,应用电化学方法研究电荷在液/液界面上的转移反应-液/液界面电化学.它是电化学及电分析化学的一个重要分支,也是生物电化学的一个重要组成部分。,Charge(electronandion)transferacrossLiquid/Liquid(L/L)interfaces,orOil/Waterinterfaces,ortheinterfacebetweentwoimmiscibleelectrolyteSolutions(ITIES)isoneofthemostfundamentalphysicochemicalprocesses.,Briefhistory:1902,NernstandRiesenfeld1906,Cremerpointedoutthattheanalogybetweenthewater/oil/waterconcentrationcellsandbiologicalmembrane1939,VerweyandNiessen,firsttheoreticalpaperontheelectricaldoublelayerandpotentialdistributionatITIES1970s,Gavachetal.inFrance首先认识到L/L界面在一定的实验条件下可以被极化,并用Chronopotentiometry对一些简单离子在Water/Nitrobenzene(W/NB)的转移行为进行了研究。同时用ModifiedVerwey-Niessen(MVN)对实验结果进行了分析。随后Korytaetal.发展了滴水电极及相应的实验装置,并首先研究了中性载体加速离子转移反应。Samecetal.in1979设计了具有iR降补偿性质的四电极恒电势仪,用来记录离子转移反应的伏安图。这样L/L界面电化学才在世界各地得到普及和蓬勃发展。,1980s,汪尔康先生等是中国第一个从事L/L界面电化学研究的group1986,Giraultetal.第一个将微-L/L界面支持在Micropipettes上1991,Cornetal.应用SHG研究L/L界面1995,MirkinandBardetal.应用SECM研究L/L界面1997,Y.Shaoetal.第一个将纳米级-L/L界面支持在Nanopipettes上并采用玻璃双管进行离子型产生/收集研究最近几年各种光谱技术也应用于此领域的研究,Gold,Pt,C,NB1,2-DCE,ThedifferencebetweenL/LinterfaceandElectrode/Electrolyteinterface,ElectrochemistryofL/Linterfaces,O+e=R,RedoxReactions,O+e=R,RedoxReactions,MZ(w)=MZ(o),IonTransfer,theconventionalElectrochemistry,ThedifferencebetweenElectrochemistryatL/LinterfaceandtheconventionalElectrochemistry,ElectrochemistryatL/LInterfacesisthebridgebetweentheconventionalelectrochemistryandChemicalsensors,ElectrochemistryatLiquid/LiquidInterfacesisafastwaytoselectreceptorsformakingchemicalsensors,Electrode,O,BiologicalMembraneModel,L/LInterface,Electrode/electrolyte,Membrane/solution,Artificial,supportedmembraneandBLM,ElectrochemistryatL/LInterfaces,NewBranchofElectrochemistry,MechanismofChemicalsensors,PhaseTransfercatalyticreactions,Mimickingbiologicalmembranes,ResearchSignificanceandapplicationsofElectrochemistryatL/LInterfaces,ExtractionMechanism,2.液/液界面电化学的基本原理,2.1.EquilibriumconditionsandNernstpotentialIngeneralatLiquid/Liquidinterfaces,therearetwotypesofchargepartition:(A)thetransferofanionMwiththechargenumberzfromthephasewtothephaseoandthereverse:MZ(w)=MZ(o)M+(w)+L(o)=ML+(o)(B)theelectrontransferbetweenaredoxcoupleO1/R1inthephasewandaredoxcoupleO2/R2inthephaseo,whichcanberepresentedas:O1(w)+R2(o)=R1(w)+O2(o),NernstEquations,Liquid/Liquidinterfaceshavebeenclassifiedintotheideal-polarizedinterfaceandno-polarizedinterface.,2.2.SingleionGibbsenergyoftransferTATBassumption,2.3.SolvationofIonBornequation,2.4.Interfacialstructureandtheiontransfermechanism(A)MVNMODEL(B)GSMODEL,2.5.SolventsandbaseelectrolytesThereareover20organicsolventswhichhavebeentestedintheITIESstudiessofar.AspointedoutbyKorytaet.al.,thefollowingthreerequirementshavebeencommonlyusedtochoosetheorganicsolvent:(1).Thesolubilityofsolventinwaterandwaterinthesolventmustbeverysmall.(2).Thesolventmustbesufficientlypolartopromotesufficientdissociationofthesupportingelectrolyteandthuskeepingenoughconductivityofthesolution.(3).Thedensityofthesolventshoulddiffersignificantlyfromthatofaqueousphaseinordertogetaphysicallystablel/linterface.,Atpresent,themostcommonlyusedorganicsolventsarenitrobenzene(NB)and1,2-dichloroethane(1,2-DCE).Someothersolventshavebeentriedinthepasttwodecades,forexample,propiophenone,4-isopropyl-1-methyl-2-nitrobenzene,dichloro-methane,nitrotulene,chloroform,anilineetc.Inordertogetmoreflexiblechoice,organicsolventmixtureshavebeenalsoemployed,forexample,nitrobenzene+chlorobenzene,NB+benzonitrileandNB+benzene.Baseelectrolytes:TBATPB(tetrabutylammoniumtetraphenylborate),TBATPBCl,CVTPB,BTPPATPB(Bistriphenylphosphoranylideneammoniumtetraphenylborate),3.液/液界面电化学的主要研究方法及仪器设备,Almostalltheinstrumentshavebeenusedtostudyclassicalelectrochemistrycanbeusedtoinvestigatethechargetransferatliquid/Liquidinterfaces.4-electrodepotentiostat-BigiRdropaqueoussolutiondropping(ascending)electrodetwo-electrodesystem-microelectrodesRecently,wedevelopedanoveltechniquetostudyITIESwiththree-electrodesetupwiththehelpofthephaseratio.Thus,allelectrochemicallabscandoresearchonthissubjects.,2-电极系统,应用于液/液界面电化学研究的升水电极-四电极系统,应用常规三电极装置(恒电势仪)研究电荷在液/液界面上的转移反应实验装置图,Aqueousphase,新的技术,例如:SHG(Secondharmonicgeneration)microelectrodes,micropipettesandnano-pipettesSECMFemto-laserSimulationsThinfilms现已用在L/LInterfaces的研究。,各种电化学方法和技术,4.液/液界面电化学的现状Structure:MVNModelandGSModelMechanism:FacilitatediontransfermechanismKinetics:Butler-Volmerequation,MarcustheoryNanometeropipettesSECMApplications:Thinfilms(solarcell,drugdelivery),98年国际上液/液界面电化学研究存在的主要问题,1.界面结构未知!MVN模型和混合溶剂层模型(GS)2.可供选择作为有机相的有机溶剂数目有限3.没有很好的获取转移反应动力学的实验手段4.iR(i-电流,R-电阻,iR降是由于溶液中电阻所引起的干扰)降及充电电流较常规电化学更加严重,目前国际上液/液界面电分析化学研究存在的主要问题,1.界面结构未知!MVN模型和混合溶剂层模型(GS)2.可供选择作为有机相的有机溶剂数目有限3.实际应用问题,HowtosolvetheseProblems,Microelectrodes:SolidandNano-andMicropipettes,+,ScanningElectrochemicalMicroscopy,SECM,ElectrochemistryatL/LInterfaces,ArtificialMembrane/ElectrolyteInterfaces,BLM,ArtificialMembraneandBiosensors,ModifiedL/LInterfaces,MicroelectrodesNano-andMicropipettes,SECM,TheSEMdiagramsofNano-andMicropipettes,Micropipettes,Nanopipettes,Micropipettes,Theta()Micropipette,TheSEMdiagramsofNano-andMicropipettes,Micropipettes,Nanopipettes,我们group可以制备内径从几个nm到十几个m的玻璃纳、微米管,AqueousPhase,OrganicPhase,AqueousPhase,OrganicPhase,AsymmetricDiffusionField,TBATPBassupportingelectrolyteinDCE,TBATPBClassupportingelectrolyteinDCE,BTPPATPBassupportingelectrolyteinDCE,MicropipetteasatooltodeterminetheionicspecieslimitingthepotentialwindowatL/LInterfaces,TBATPB(Tetrabutyalammoniumtetraphenylborate),TBATPBCl(tetrabutyl-ammoniumtetrakis4-chlorophenylborate),BTPPATPB(Bistriphosphor-anylideneammoniumtetraphenyl-borate),1,2-dichloroethane(DCE),Ag/AgCl/0.01MTBACl/0.25mMDB18C6+0.01MTBATPBCl/0.01MKCl/AgCl/Ag,Identifythedifferentmechanisms,ACT,TOC,TIC,TID,w,o,w,o,w,o,w,o,Identifyofdifferentmechanismsoffacilitatediontransfers,Idisk=4nFaDC,Ipip=3.35nFaDC,WhyIpipisabout2.63timesbiggerthanIdisk?,Silanizationplaysveryimportantrolehere!,Anal.Chem.,1998,70,p3155-3161,3.4E-9,Nanometer-sizedL/LInterface,纳米管Nanopipet,AqueousPhase,Nano-ITIESkofrom0.1cm/sto10cm/sA54nmradiusB5nmradius,J.Am.Chem.Soc.,1997,119,8103,K+(w)+DB18C6(DCE)=K+DB18C6(DCE),J.Am.Chem.Soc.,1998,120,12700,科学意义和创新点:第一次在实验上实现了非氧化还原物质的Generation/CollectionMode。对于测量反应中间产物和快速电荷转移反应动力学有重要意义。,Thephotoof-micropipetteundermicroscope,Anal.Chem.,Y.Shaoetal.,2003,75,6593,“Non-solution”L/LInterfaceElectrochemistry,Generator(1)andcollector(2)voltammogramsofthetransferofK+betweenwaterandDCEcontainingDB18C6,igvs.Egandicvs.Egcurvesobtainedwithanaqueousfilmlinkingtwobarrelsofthe-pipet,Detectionofammoniaintheair.Cyclicvoltammogamsobtainedwitha-pipetexposedtoair(1)andammoniavaporaboveits2Msolution,ThepotentialwindowsdependupontheamountofAgar.Scanrateis30mV/s.Theradiusofthemicropipetteis4m,curves1、2、3and4correspondingto25%、10%、1%and0.5%ofAgar,respectively,Agar-waterMicroelectrode,CyclicVoltammogramsofK+transferfacilitatedbyDB18C6.KClis0.1M,Scanrate=30mV/s。Theradiusofthemicropipetteis3m。Curves1,2and3correspondingtotheconcentrationsofDB18C60.25,0.5and1.0mM.,1,2,3,(a)r=12m,(b)r=3m.,Planarstructure(a)and3Dstructure(b)ofanewtypeofcrownether,Cyclicvoltammogramwithscanrateof10mV/sfora14m-radiusmicropipetteelectrodewith100mMNaClinaqueousphaseand10mMTBATPBinorganicphase,Alkalimetalionstransferacrossthewater/DCEinterfaceFacilitatedbyDB18C6,Ionradius(r),formaltransferpotentialofrelevantalkalimetalionsandtheassociationconstantsofcomplex(M-DB18C6)+inDCEphase,冰/有机相溶液界面研究示意图,应用常规三电极装置(恒电势仪)研究电荷在液/液界面上的转移反应实验装置图,Aqueousphase,EffectoftheconcentrationRatiooftheredoxcouple,Sweeprate:100mV/s.a,b,c,d,ecorrespondto(Ferri/ferrocynaide)10,5,1,0.2,0.1,异相电子转移反应,创新点:用四(二)电极系统所能研究的体系,如离子、加速离子和电子转移反应,均能用常规三电极系统进行研究,这对于普及和发展此领域有重要意义。,CyclicvoltammogramsforpotassiumiontransferunderdifferentconcentrationsofDB18C6usingthefollowingcell:Ag|AgTPB|0.005MBTPPATPB+ymMDB18C6|1mMK4Fe(CN)6/1mMK3Fe(CN)6+0.1MKCl|Pt.a.y=0.005;b.y=0.05;c.y=0.1;d.y=0.5.Scanrate:100mV/s.,中国科学B,2002,32,271-277,Y.Shaoetal.,Ag/AgCl,Phasevolumeratior=VO/VW,Bigr,Smallr,A,B,Schematicpresentationsoftheelectrochemicalcellsforthecasesrarelarge(A)orsmall(B),Anal.Chem.,2003,75,4341,Y.Shaoetal.,可质子化药物的研究,Theoreticalionicpartitiondiagramforalipophilicbase(equiconcentrationconvention).,Chemicalstructuresandabbreviationsofthedrugcompoundsinvestigated.,(,(AMTL),(THPE),(DPAN),Typicalcyclicvoltammogramsobtainedforthetransferofamitriptyline(AMTL)acrossthewater/1,2-dichloroethaneinterfaceatdifferentpHs.PeakAcorrespondtothetransferofAMTLH+andpeakBcorrespondtothatofTMA+.,Ionicpartitiondiagramsforamitriptyline(AMTL),Diphenhydramine(DPAN)andTrihexyphenedyl(THPE)atthewater/1,2-dichloroethaneinterface,Anal.Chem.,2003,75,4341,Y.Shaoetal.科学通报,2003,48,787,Y.Shaoetal.,(a)TheTafelplotsforthesystemofZnPor/Fe(CN)64-atdifferentconcentrationsoforganicelectrolyteandtheMarcustheoreticalcurve(1),theconcentrationsare()10mM,()50mM,()100mM,respectively.(b)TheTafelplotforthesystemofTCNQ/Fe(CN)63-.,J.Am.Chem.Soc.,2003,125,9600,Y.Shaoetal.,SchematicdiagramoftheapplicationofSECMtoprobefacilitatediontransferatanexternallypolarizedLiquid/Liquidinterface,ProbingfacilitatediontransferatanexternallypolarizedL/Linterface,Experimentalapproachcurvesofa238-nm-radiuspipetfittedwiththetheoreticalvalues.Thetippotentialis0.45V,thesubstratepotentialis()0.20V()0.225V()0.25V()0.275V(*)0.30V()0.325V()0.35V()0.375V()0.40V()0.425v()curve1theoreticalcurvefordiffusioncontrolledprocess,curves2-6theoreticalcurvesforkineticscontrolledprocess.TheinsetshowsdependenceoftheheterogeneousrateconstantsondifferentEs-Eso.,Angew.Chem.Int.Ed,2002,41(18),3445-3448,Y.Shaoetal.,由于液/液界面本质上是一个分子软界面,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025海南海西州州本级公益性岗位招聘17人模拟试卷及一套答案详解
- 2025广东惠州市龙门县教育局招聘教师80人(编制)模拟试卷及答案详解(典优)
- 2025河北雄安雄州人才发展集团有限公司公开招聘21名专项岗位人员考前自测高频考点模拟试题带答案详解
- 2025福建福州市体育工作大队招聘食堂小工2人模拟试卷及答案详解参考
- 2025广西北流市山围镇卫生院招聘编外人员考前自测高频考点模拟试题完整答案详解
- 2025年甘肃省武威工程职业学校招聘模拟试卷附答案详解(典型题)
- 2025甘肃省天水监狱招聘20人考前自测高频考点模拟试题附答案详解
- 2025年河北唐山滦州市森林草原消防专业队员招聘7人考前自测高频考点模拟试题及答案详解(有一套)
- 2025年芜湖前湾集团有限公司招聘2人模拟试卷有答案详解
- 2025广西贺州市富川瑶族自治县公安局第一次公开招聘警务辅助人员8人模拟试卷及1套完整答案详解
- 《水的组成》说课课件
- 小学二年级上册数学练习题
- 内科常见疾病中医诊疗规范诊疗指南2023版
- 全国2022年10月自考05744《食品加工与保藏(专)》真题
- 最全面人教版八年级上册英语各单元作文范文汇总
- 赞美诗歌大全下载(赞美诗选下载全集)
- 文化人类学课件完整版
- 碳达峰碳中和产业发展调研报告
- GB/T 12642-2013工业机器人性能规范及其试验方法
- 【初中历史】商鞅变法优秀课件31-川教版
- 食品质量与安全管理概述课件
评论
0/150
提交评论