20.4课题学习最短路径问题.ppt_第1页
20.4课题学习最短路径问题.ppt_第2页
20.4课题学习最短路径问题.ppt_第3页
20.4课题学习最短路径问题.ppt_第4页
20.4课题学习最短路径问题.ppt_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版八年级上册,20.4课题学习最短路径问题北林区西长发中学孙丽影,问题1相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边l饮马,然后到B地到河边什么地方饮马可使他所走的路线全程最短?,创设情境引入课题,追问1这是一个实际问题,你打算首先做什么?,将A,B两地抽象为两个点,将河l抽象为一条直线,自主探究合作交流构建新知,(1)从A地出发,到河边l饮马,然后到B地;(2)在河边饮马的地点有无穷多处,把这些地点与A,B连接起来的两条线段的长度之和,就是从A地到饮马地点,再回到B地的路程之和;,探索新知,追问2你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?,探索新知,追问2你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?,(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点设C为直线上的一个动点,上面的问题就转化为:当点C在l的什么位置时,AC与CB的和最小(如图),追问1对于问题2,如何将点B“移”到l的另一侧B处,满足直线l上的任意一点C,都保持CB与CB的长度相等?,探索新知,问题2如图,点A,B在直线l的同侧,点C是直线上的一个动点,当点C在l的什么位置时,AC与CB的和最小?,追问2你能利用轴对称的有关知识,找到上问中符合条件的点B吗?,探索新知,问题2如图,点A,B在直线l的同侧,点C是直线上的一个动点,当点C在l的什么位置时,AC与CB的和最小?,作法:(1)作点B关于直线l的对称点B;(2)连接AB,与直线l相交于点C则点C即为所求,探索新知,问题2如图,点A,B在直线l的同侧,点C是直线上的一个动点,当点C在l的什么位置时,AC与CB的和最小?,探索新知,问题3你能用所学的知识证明AC+BC最短吗?,证明:如图,在直线l上任取一点C(与点C不重合),连接AC,BC,BC由轴对称的性质知,BC=BC,BC=BCAC+BC=AC+BC=AB,AC+BC=AC+BC,探索新知,问题3你能用所学的知识证明AC+BC最短吗?,探索新知,问题3你能用所学的知识证明AC+BC最短吗?,证明:在ABC中,ABAC+BC,AC+BCAC+BC即AC+BC最短,若直线l上任意一点(与点C不重合)与A,B两点的距离和都大于AC+BC,就说明AC+BC最小,探索新知,追问1证明AC+BC最短时,为什么要在直线l上任取一点C(与点C不重合),证明AC+BCAC+BC?这里的“C”的作用是什么?,探索新知,追问2回顾前面的探究过程,我们是通过怎样的过程、借助什么解决问题的?,运用新知,练习如图,一个旅游船从大桥AB的P处前往山脚下的Q处接游客,然后将游客送往河岸BC上,再返回P处,请画出旅游船的最短路径,运用新知,基本思路:由于两点之间线段最短,所以首先可连接PQ,线段PQ为旅游船最短路径中的必经线路将河岸抽象为一条直线BC,这样问题就转化为“点P,Q在直线BC的同侧,如何在BC上找到一点R,使PR与QR的和最小”,造桥选址问题,如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.乔早在何处才能使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直),思维分析,1、如图假定任选位置造桥,连接和,从A到B的路径是AM+MN+BN,那么怎样确定什么情况下最短呢?,2、利用线段公理解决问题我们遇到了什么障碍呢?,我们能否在不改变AM+MN+BN的前提下把桥转化到一侧呢?什么图形变换能帮助我们呢?,思维火花,各抒己见,1、把A平移到岸边.,2、把B平移到岸边.,3、把桥平移到和A相连.,4、把桥平移到和B相连.,上述方法都能做到使AM+MN+BN不变呢?请检验.,合作与交流,1、2两种方法改变了.怎样调整呢?,把A或B分别向下或上平移一个桥长,那么怎样确定桥的位置呢?,问题解决,A1,M,N,如图,平移A到A1,使A1等于河宽,连接A1交河岸于作桥,此时路径最短.,理由;另任作桥,连接,.,由平移性质可知,.,AM+MN+BN转化为,而转化为.,在中,由线段公理知A1N1+BN1A1B,因此AM+MN+BN,问题延伸一,如图,A和B两地之间有两条河,现要在两条河上各造一座桥MN和PQ.桥分别建在何处才能使从A到B的路径最短?(假定河的两岸是平行的直线,桥要与河岸垂直),思维分析,如图,问题中所走总路径是AM+MN+NP+PQ+,桥MN和PQ在中间,且方向不能改变,仍无法直接利用“两点之间,线段最短”解决问题,只有利用平移变换转移到两侧或同一侧先走桥长.,平移的方法有三种:两个桥长都平移到A点处、都平移到B点处、MN平移到A点处,PQ平移到B点处,思维方法一,1、沿垂直于第一条河岸的方向平移A点至AA1使AA1=MN,此时问题转化为问题基本题型两点(A1、B点)和一条河建桥(PQ),2、利用基本问题的解决方法确定桥PQ:(1)在沿垂直于第二条河岸的方向平移A1至A2,使A1A2=PQ.(2)连接A2B交A2的对岸Q点,在点处建桥PQ.,3、确定PQ的位置,也确定了BQ和PQ,此时问题可转化为由A点、P点和第一条河确定桥MN的位置.,连接A1P交的对岸于点,在点处建桥,问题解决,沿垂直于河岸方向依次把点、,使,;连接交于点相邻河岸于点,建桥;连接交的对岸于点,建桥;从点到点的最短路径为MMN,思维方法二,沿垂直于第一条河岸方向平移点至点,沿垂直于第二条河岸方向平移点至点,连接A1B1分别交A、B的对岸于N、P两点,建桥MN和PQ.,最短路径AM+MN+NP+PQ+QB转化为AA1+A1B1+BB1.,思维方法三,沿垂直于河岸方向依次把B点平移至B、B,使BBPQ,BBMN;连接BA交于A点相邻河岸于M点,建桥MN;连接BN交B的对岸于P点,建桥PQ;从点到点的最短路径为MMNNP转化为AB2+B2B1+B1B,问题延伸二,如图,A和B两地之间有三条河,现要在两条河上各造一座桥MN、PQ和GH.桥分别建在何处才能使从A到B的路径最短?(假定河的两岸是平行的直线,桥要与河岸垂直),思维分析,如图,问题中所走总路径是AM+MN+NP+PQ+G+GH+HB,桥MN、PQ和GH在中间,且方向不能改变,仍无法直接利用“两点之间,线段最短”解决问题,只有利用平移变换转移到两侧或同一侧先走桥长.,平移的方法有四种:三个桥长都平移到A点处;都平移到B点处;MN、PQ平移到A点处;PQ、GH平移到B点处,问题解决,沿垂直于河岸方向依次把A点平移至A、A、A3,使AAMN,AAPQ,A2A3=GH;连接A3B交于B点相邻河岸于H点,建桥GH;连接A2G交第二河与G对岸的P点,建桥PQ;连接A1P交第一条河与A的对岸于N点,建桥MN.此时从A到B点路径最短.,沿垂直于河岸方向依次把A点平移至A、A、A3,使AAMN,AAPQ,A2A3=GH;连接A3B交于B点相邻河岸于H点,建桥GH;连接A2G交第二河与G对岸的P点,建桥PQ;连接A1P交第一条河与A的对岸于N点,建桥MN.此时从A到B点路径最短.,问题解决,沿垂直于河岸方向依次把A点平移至A,使AAMN,平移B点至B1、B2,使BB1GH,B1B2=PQ;连接A1B2交第一条河与A点相对河岸于N点,交第二条河与N相邻河岸于P点,建桥MN、PQ;连接B1Q交第三条河与Q相邻河岸的G点,建桥GH;此时从A到B点路径最短.,问题解决,沿垂直于河岸方向依次把A点平移至A、A2,使AAMN,平移B点至B1,使BB1GH;连接AB交第三条河与点相对河岸于点,交第二条河与相邻河岸于点,建桥、PQ;连接1交第一条河与相邻河岸的点,建桥;此时从A到B点路径最短.,问题解决,巩固新知,同样,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论