



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三讲: 集 合 集合的概念 知识点睛1集合:某些指定的对象集在一起成为集合。(1)集合中的对象称元素,若a是集合A的元素,记作;若b不是集合A的元素,记作;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号内。具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。(4)常用数集及其记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R。2集合的包含关系:(1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作AB(或);集合相等:构成两个集合的元素完全一样。若AB且BA,则称A等于B,记作A=B;若AB且AB,则称A是B的真子集,记作A B;(2)简单性质:1)AA;2)A;3)若AB,BC,则AC;4)若集合A是n个元素的集合,则集合A有2n个子集(其中2n1个真子集);经典精讲 经典精讲例1已知集合,则 ( ) 解法要点:弄清集合中的元素是什么,能化简的集合要化简例2设集合,若,求的值及集合、例3若集合,集合,且,求实数的取值范围 集合的运算 知识点睛3全集与补集:(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U;(2)若S是一个集合,AS,则,=称S中子集A的补集;(3)简单性质:1)()=A;2)S=,=S。4交集与并集:(1)一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集。交集。(2)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。5集合的简单性质:(1)(2)(3)(4);(5)(AB)=(A)(B),(AB)=(A)(B)。 经典精讲例1设全集,若,则 , 解法要点:利用文氏图例2已知集合,若,求实数、的值例3已知集合,则 ; 实战演练1已知,若,则适合条件的实数的集合为; 的子集有 个;的非空真子集有 个2已知:,则实数、的值分别为 3调查100名携带药品出国的旅游者,其中75人带有感冒药,80人带有胃药,那么既带感冒药又带胃药的人数的最大值为 ,最小值为 4设数集,且、都是集合的子集,如果把叫做集合的“长度”,那么集合的长度的最小值是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 防水工程材料进场检验管理方案
- 2025年运动医学康复治疗方案设计考核卷答案及解析
- 林木种质资源库运维管理方案
- 广东省肇庆市2024-2025年高中地理 限时训练六评讲说课稿 新人教版必修2
- 2025年心理咨询与治疗技术测试卷答案及解析
- 2025(参考)设备采购合同(标准中英)样式例文办公文档
- 2025年消化内科疾病诊断与治疗模拟练习答案及解析
- 5.5 跨学科实践:制作望远镜 说课稿 2024-2025学年物理人教版八年级上册
- 2025年骨科手术技能实操考察模拟试卷答案及解析
- 2025药品采购合同标准范本
- 山东省第五届财会知识大赛试题及答案
- 个人给公司的投资协议书范本
- 2024年安徽省地勘行业职业技能大赛(地质调查员)考试题库(含答案)
- 2024养老院房屋租赁合同
- 输血指南的循证医学更新
- 2024年第九届中小学“学宪法、讲宪法”活动知识素养竞赛题库
- HG∕T 3792-2014 交联型氟树脂涂料
- DB65-T 4488-2022 地理标志产品 奇台面粉
- 海南公司防止电力事故二十五项反事故措施题库
- 部编人教版道德与法治三年级上册全册教案
- 红酒市场调研报告
评论
0/150
提交评论