




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
考点14 三角函数的基本概念、同角三角函数的基本关系与诱导公式1任意角的概念、弧度制(1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化.2三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2)能利用单位圆中的三角函数线推导出,的正弦、余弦、正切的诱导公式,能画出的图象,了解三角函数的周期性.(3)理解同角三角函数的基本关系式:,.一、角的有关概念1定义角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形2分类(1)按旋转方向不同分为正角、负角、零角(2)按终边位置不同分为象限角和轴线角学=(3)终边相同的角:所有与角终边相同的角,连同角在内,可构成一个集合3象限角与轴线角第一象限角的集合为;第二象限角的集合为;第三象限角的集合为;第四象限角的集合为终边与轴非负半轴重合的角的集合为;终边与轴非正半轴重合的角的集合为;终边与轴重合的角的集合为;终边与轴非负半轴重合的角的集合为;终边与轴非正半轴重合的角的集合为;终边与轴重合的角的集合为;终边与坐标轴重合的角的集合为二、弧度制11弧度的角把长度等于半径长的弧所对的圆心角叫做1弧度的角规定:是以角作为圆心角时所对圆弧的长,为半径正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零2弧度制用“弧度”做单位来度量角的单位制叫做弧度制比值与所取的的大小无关,仅与角的大小有关3弧度与角度的换算4弧长公式,其中的单位是弧度,与的单位要统一.角度制下的弧长公式为:(其中为扇形圆心角的角度数).5扇形的面积公式. 角度制下的扇形面积公式为:(其中为扇形圆心角的角度数).三、任意角的三角函数 1定义设是一个任意角,它的顶点与原点重合,始边与轴非负半轴重合,点是角的终边上任意一点,到原点的距离,那么角的正弦、余弦、正切分别是 注意:正切函数的定义域是,正弦函数和余弦函数的定义域都是. 2三角函数值在各象限内的符号三角函数值在各象限内的符号口诀:一全正、二正弦、三正切、四余弦3三角函数线设角的顶点与原点重合,始边与轴非负半轴重合,终边与单位圆相交于点,过作垂直于轴于由三角函数的定义知,点的坐标为,即,其中单位圆与轴的正半轴交于点,单位圆在点的切线与的终边或其反向延长线相交于点,则我们把有向线段分别叫做的余弦线、正弦线、正切线各象限内的三角函数线如下:角所在的象限第一象限第二象限第三象限第四象限图形4特殊角的三角函数值0 0100100101不存在0不存在0补充:四、同角三角函数的基本关系式1平方关系2商的关系3同角三角函数基本关系式的变形(1)平方关系的变形:;(2)商的关系的变形:;(3)五、三角函数的诱导公式公式一二三四五六角2k+(kZ)+正弦sin sinsinsincoscos余弦cos cos cos cos sinsin 正切tan tantantan口诀函数名不变,符号看象限函数名改变,符号看象限考向一 三角函数的定义1利用三角函数的定义求角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x、纵坐标y、该点到原点的距离r.若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同)2利用三角函数线解三角不等式的步骤:确定区域的边界;确定区域;写出解集3已知角的终边所在的直线方程或角的大小,根据三角函数的定义可求角终边上某特定点的坐标4三角函数值的符号及角的位置的判断已知一角的三角函数值(,)中任意两个的符号,可分别确定出角的终边所在的可能位置,二者的交集即为该角的终边位置注意终边在坐标轴上的特殊情况.典例1 已知角的终边上有一点P(,m),且m,求与的值.【名师点睛】任意角的三角函数值仅与角的终边位置有关,而与角终边上点P的位置无关若角已经给出,则无论点P选择在终边上的什么位置,角的三角函数值都是确定的1已知角的终边经过点,其中,则等于A BC D考向二 象限角和终边相同的角的判断及表示方法1已知所在的象限,求或n(nN*)所在的象限的方法是:将的范围用不等式(含有k)表示,然后两边同除以n或乘以n,再对k进行讨论,得到或n(nN*)所在的象限2象限角的判定有两种方法:一是根据图象,其依据是终边相同的角的思想;二是先将此角化为k360(0360,kZ)的形式,即找出与此角终边相同的角,再由角终边所在的象限来判断此角是第几象限角3由角的终边所在的象限判断三角函数式的符号,需确定各三角函数的符号,然后依据“同号得正,异号得负”求解.典例2 已知, ,试确定角是第几象限的角.【名师点睛】角与所在象限的对应关系:若角是第一象限角,则是第一象限角或第三象限角;若角是第二象限角,则是第一象限角或第三象限角;若角是第三象限角,则是第二象限角或第四象限角;若角是第四象限角,则是第二象限角或第四象限角2若,则角是A第一象限角 B第二象限角C第三象限角 D第四象限角考向三 同角三角函数基本关系式的应用1利用可以实现角的正弦、余弦的互化,利用可以实现角的弦切互化2的齐次式的应用:分式中分子与分母是关于的齐次式,或含有及的式子求值时,可将所求式子的分母看作“1”,利用“”代换后转化为“切”后求解.典例3 已知,.(1)当时,求的值;(2)当时,求的值.【解析】(1)由已知得,所以,又,.(2)当时,.方法1:,.由可得,.方法2:,或,又,.3已知角的始边与轴的非负半轴重合,顶点与坐标原点重合,终边过点,则_考向四 诱导公式的应用1应用诱导公式,重点是“函数名称”与“正负号”的正确判断求任意角的三角函数值的问题,都可以通过诱导公式化为锐角三角函数的求值问题,具体步骤为“负角化正角”“正角化锐角”求值2使用诱导公式时一定要注意三角函数值在各象限的符号,特别是在具体题目中出现类似的形式时,需要对k的取值进行分类讨论,从而确定出三角函数值的正负3利用诱导公式化简三角函数式的思路:(1)分析结构特点,选择恰当公式;(2)利用公式化成单角三角函数;(3)整理得最简形式利用诱导公式化简三角函数式的要求:(1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值4巧用相关角的关系能简化解题的过程常见的互余关系有与,与,与等;常见的互补关系有与,与等.典例4 已知,且,则A BC D【答案】A【解析】,.,则.,.故选A典例5 (1)化简:;(2)化简:.【解析】(1)=.(2)原式.4已知角的终边经过点.(1)求的值;(2)求的值.考向五 同角三角函数的基本关系式、诱导公式在三角形中的应用与三角形相结合时,诱导公式在三角形中经常使用,常用的角的变形有:,,等,于是可得,等典例6 在中,内角,所对的边分别是,若,则_,_.【答案】,5在中,求的值1与终边相同的角为A BC D2若角的顶点为坐标原点,始边在轴的非负半轴上,终边在直线上,则角的取值集合是A BC D3已知扇形面积为,半径是l,则扇形的圆心角是A BC D4已知,且,则角是A第一象限角 B第二象限角C第三象限角 D第四象限角5若,则A B C D 6若,则A2 BC3 D7在平面直角坐标系中,若角的终边经过点,则A BC D8已知,则A BC D9若,则的值为A BC D10在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边过点,则_,_11在平面直角坐标系中,点的坐标为,是第三象限内一点,且,则点的横坐标为_.12已知的终边与单位圆交于点,点关于直线对称后的点为,点关于轴对称后的点为,设角的终边为射线.(1)与的关系为_;(2)若,则_. 13 在中,且cos A cos(B),则C等于 14化简:(1);(2).15已知.(1)求的值;(2)求的值.16已知向量与互相平行,其中.(1)求sin和cos的值;(2)若sin(),0,求cos的值变式拓展1【答案】B2【答案】D【解析】由,得,又,所以,所以为第四象限角,选D3【答案】10【解析】根据角的终边过,利用三角函数的定义可以求得,所以有,故答案是10.4【解析】因为角的终边经过点,设,则,所以,.(1);(2).5【解析】 ,即, +,得,得考点冲关3【答案】C【解析】设扇形的圆心角是,则,解得,故选C4【答案】D【解析】由可知,结合可得:,即,据此可得角是第四象限角.故选D.5【答案】C【解析】由得是第一、三象限角,若是第三象限角,则A,B错;由知,C正确;取时,D错6【答案】A【解析】因为,所以即,选A 7【答案】B【解析】由诱导公式可得:,即,由三角函数的定义可得:,则.故选B.8【答案】D【解析】,即,则,故选D9【答案】C【解析】由诱导公式得,两边平方得,则,所以,又因为,所以,所以,故选C11【答案】【解析】设,则,Q点的横坐标为.12【答案】(1);(2)【解析】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 对外汉语天气课件
- plc考试题目及答案
- 语言的接触题库及答案
- 2025年灭菌岗位试卷及答案
- 2024年秋季新人教版八年级上册物理全册教案
- 2025年防疫课堂试卷及答案
- 安全培训的结尾课件
- 寒假安全培训内容课件
- 富阳摩托安全培训课件
- 2025年泵工安全考试试题及答案
- 2025年银行内部审计部门财务审计员竞聘考试指南
- 2025至2030中国PCIE行业项目调研及市场前景预测评估报告
- 2025广东深圳市光明区统计局招聘(选聘)专干4人笔试参考题库附答案解析
- Unit 1 A new start Starting out 课件(内嵌音视频)高一英语外研版必修第一册
- 2025年人防工程试题及答案
- 安全烹饪知识培训内容课件
- 2025-2026学年道德与法治八年级上册教学计划
- 中小学校长在2025秋季开学第一次全体教师大会上讲话:人心决定温度人格决定高度人品决定厚度
- 技改管理制度
- 树立正确就业观课件
- 2025年中国电信考试真题及答案
评论
0/150
提交评论