




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
计量经济学上机实验报告多重共线性检验实验背景近年来,中国旅游业一直保持高速发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作用日益显现。中国的旅游业分为国内旅游和入境旅游两大市场,入境旅游外汇收入年均增长22.6%,与此同时国内旅游也迅速增长。改革开放20多年来,特别是进入90年代后,中国的国内旅游收入年均增长14.4%,远高于同期GDP 9.76%的增长率。 为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。 模型 其中, Yt第t年全国旅游收入 X2国内旅游人数(万人) X3城镇居民人均旅游支出 (元) X4农村居民人均旅游支出 (元) X5公路里程(万公里) X6铁路里程(万公里)Y = 0.*X2 + 0.*X3 + 5.*X4 - 3.*X5 - 53.*X6 - 2220.数据来源中国统计局网站样本区间 19942009实验过程及结果(一)实证结果Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 15:49Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.X.0000X.8768X.0204X5-3.2.-1.0.1886X6-53.38584434.6829-0.0.9047C-2220.1512210.044-1.0.3388R-squared0.Mean dependent var4270.119Adjusted R-squared0.S.D. dependent var2720.860S.E. of regression252.1678Akaike info criterion14.17806Sum squared resid.0Schwarz criterion14.46778Log likelihood-107.4245F-statistic347.2644Durbin-Watson stat1.Prob(F-statistic)0.R2很高,F显著,但x3、x5、x6不显著,X5、X6的符号甚至是负的。可能存在多重共线性(二)检查各解释变量之间的相关性X2X3X4X5X6X.0.X.0.X.0.X.0.X.1.各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性。(三)进一步检验和消除多重共线性,采用逐步回归法分别作Y对X2、X3、X4、X5、X6的一元回归,结果如下:变量x2x3x4x5x6参数估计值0.17.7860328.7987124.211453751.241t统计量27.9224558812.83403R-squared0.9823.按R-squared大小排序为:X2、X6、X5、X3、X4以X2为基础,分别加入X3、X4、X5、X6加入X3,不显著,排除。Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:11Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.C-3012.810549.3740-5.0.0001X59910.0000X.0555R-squared0.Mean dependent var4270.119Adjusted R-squared0.S.D. dependent var2720.860S.E. of regression335.2951Akaike info criterion14.63526Sum squared resid.Schwarz criterion14.78012Log likelihood-114.0821F-statistic487.3775Durbin-Watson stat0.Prob(F-statistic)0.加入X4,显著,保留Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:12Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.C-2360.596180.9037-13.048910.0000X98450.0000X.0006R-squared0.Mean dependent var4270.119Adjusted R-squared0.S.D. dependent var2720.860S.E. of regression242.2577Akaike info criterion13.98524Sum squared resid.5Schwarz criterion14.13010Log likelihood-108.8819F-statistic939.5591Durbin-Watson stat0.Prob(F-statistic)0.加入X5,不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:12Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.C-2052.457252.8897-8.0.0000X.0000X5-4.3.-1.0.2549R-squared0.Mean dependent var4270.119Adjusted R-squared0.S.D. dependent var2720.860S.E. of regression368.5792Akaike info criterion14.82455Sum squared resid.Schwarz criterion14.96941Log likelihood-115.5964F-statistic402.2068Durbin-Watson stat0.Prob(F-statistic)0.加入X6,显著,保留Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:12Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.C-6813.6822061.836-3.0.0057X.0000X6867.2159365.80032.0.0339R-squared0.Mean dependent var4270.119Adjusted R-squared0.S.D. dependent var2720.860S.E. of regression324.3425Akaike info criterion14.56884Sum squared resid.Schwarz criterion14.71370Log likelihood-113.5507F-statistic521.2956Durbin-Watson stat0.Prob(F-statistic)0.保留了X4和X6分别以X2和X4为基础,加入其他变量加入X3不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:35Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.C-2323.426462.3572-5.0.0003X13290.0000X.0061X3-0.1.-0.0.9313R-squared0.Mean dependent var4270.119Adjusted R-squared0.S.D. dependent var2720.860S.E. of regression252.0685Akaike info criterion14.10960Sum squared resid.3Schwarz criterion14.30274Log likelihood-108.8768F-statistic578.5661Durbin-Watson stat0.Prob(F-statistic)0.加入X5不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:37Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.C-2432.172178.3609-13.636240.0000X58080.0000X.0006X5-3.2.-1.0.1508R-squared0.Mean dependent var4270.119Adjusted R-squared0.S.D. dependent var2720.860S.E. of regression230.5411Akaike info criterion13.93105Sum squared resid.2Schwarz criterion14.12420Log likelihood-107.4484F-statistic692.4432Durbin-Watson stat1.Prob(F-statistic)0.加入X6不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:25Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.C-2291.5332172.352-1.0.3123X99930.0000X.0095X6-12.85589402.8593-0.0.9751R-squared0.Mean dependent var4270.119Adjusted R-squared0.S.D. dependent var2720.860S.E. of regression252.1391Akaike info criterion14.11016Sum squared resid.7Schwarz criterion14.30330Log likelihood-108.8813F-statistic578.2396Durbin-Watson stat0.Prob(F-statistic)0.以X2、X6为基础,加入其他变量加入X3 ,不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:38Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.C-5877.5502399.623-2.0.0306X.0000X6606.4675495.01671.0.2440X.4416R-squared0.Mean dependent var4270.119Adjusted R-squared0.S.D. dependent var2720.860S.E. of regression329.0154Akaike info criterion14.64240Sum squared resid.Schwarz criterion14.83555Log likelihood-113.1392F-statistic337.9400Durbin-Watson stat0.Prob(F-statistic)0.加入X4不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:38Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.C-2291.5332172.352-1.0.3123X99930.0000X6-12.85589402.8593-0.0.9751X.0095R-squared0.Mean dependent var4270.119Adjusted R-squared0.S.D. dependent var2720.860S.E. of regression252.1391Akaike info criterion14.11016Sum squared resid.7Schwarz criterion14.30330Log likelihood-108.8813F-statistic578.2396Durbin-Watson stat0.Prob(F-statistic)0.加入X5不显著,排除Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:39Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.C-6722.3952029.031-3.0.0062X.0000X6835.0915360.72052.0.0391X5-3.2.-1.0.2529R-squared0.Mean dependent var4270.119Adjusted R-squared0.S.D. dependent var2720.860S.E. of regression318.9580Akaike info criterion14.58031Sum squared resid.Schwarz criterion14.77346Log likelihood-112.6425F-statistic359.8440Durbin-Watson stat0.Prob(F-statistic)0.最后证实结果X2和X4Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 16:12Sample: 1994 2009Included observations: 16VariableCoefficientStd. Errort-StatisticProb.C-2360.596180.9037-13.048910.0000X98450.0000X.0006R-squared0.Mean dependent var4270.119Adjusted R-squared0.S.D. dependent var2720.860S.E. of regression242.2577Akaike info criterion1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 子宫肌瘤剔除术护理查房
- 2026届广东省普宁市华南实验学校英语九年级第一学期期末达标检测模拟试题含解析
- 2026届四川省绵阳富乐园际学校化学九年级第一学期期末学业质量监测模拟试题含解析
- 2026届江苏省泰州市姜堰区实验初级中学化学九年级第一学期期中监测试题含解析
- 2026届吉林省前郭尔罗斯蒙古族自治县化学九年级第一学期期中监测试题含解析
- 商场员工培训资料
- 汽车线束销售年终总结
- 2026届宁夏吴忠市红寺堡二中学化学九上期中调研试题含解析
- 山东省济南市育英中学2026届化学九年级第一学期期中达标检测模拟试题含解析
- 山西省山西大学附属中学等校2025-2026学年高三上学期9月月考政治试题(含答案)
- 中国华电战略发展研究中心招聘笔试题库2025
- 生涯人物访谈表
- 苏教版六年级上数学全册教学反思(全册)
- 百善孝为先主题班会课件
- 业务连续性管理-(BCM)实务培训课件
- 耳鼻喉科多功能手术动力系统
- 北师大版四年级上册数学(全册)同步随堂练习一课一练
- K2FastWave中文操作手册
- 创新小白实操指南 教案.docx
- 高中数学 1.2.3函数的表示法(一)教案 新人教A版必修1[1]
- 地热井常见主要问题分析与研究_图文
评论
0/150
提交评论