SPSS的相关分析和回归分析.ppt_第1页
SPSS的相关分析和回归分析.ppt_第2页
SPSS的相关分析和回归分析.ppt_第3页
SPSS的相关分析和回归分析.ppt_第4页
SPSS的相关分析和回归分析.ppt_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第八章SPSS的相关分析和回归分析,概述,(一)相关关系(1)函数关系:(如:销售额与销售量;圆面积和圆半径.)是事物间的一种一一对应的确定性关系.即:当一个变量x取一定值时,另一变量y可以依确定的关系取一个确定的值(2)统计关系:(如:收入和消费;身高的遗传.)事物间的关系不是确定性的.即:当一个变量x取一定值时,另一变量y的取值可能有几个.一个变量的值不能由另一个变量唯一确定,概述,统计关系的常见类型:线性相关:正线性相关、负线性相关非线性相关统计关系不象函数关系那样直接,但却普遍存在,且有强有弱.如何测度?,概述,(二)相关分析和回归分析的任务研究对象:统计关系相关分析旨在测度变量间线性关系的强弱程度.回归分析侧重考察变量之间的数量变化规律,并通过一定的数学表达式来描述这种关系,进而确定一个或几个变量的变化对另一个变量的影响程度.,相关分析,(一)目的通过样本数据,研究两变量间线性相关程度的强弱.(例如:职工的年龄和收入之间的关系、工人数和管理人员之间的数量关系)(二)基本方法绘制散点图、计算相关系数,绘制散点图,(一)散点图将数据以点的形式绘制在直角平面上.比较直观,可以用来发现变量间的关系和可能的趋势.,体现了正相关趋势,绘制散点图,(二)基本操作步骤(1)菜单选项:graphs-scatter(2)选择散点图类型:simple:简单散点图(显示一对变量的散点图)overlay:重叠散点图(显示多对变量的散点图)(3)选择x轴和y轴的变量(4)选择分组变量(setmarkersby):分别以不同颜色点的表示(5)选择标记变量(labelcaseby):散点图上可带有标记变量的值(如:职工号),绘制散点图,(三)应用举例通过27家企业普通员工人数和管理人员数,利用散点图分析人数之间的关系,散点图在进行相关分析时较为粗略,计算相关系数,(一)相关系数(1)作用:以精确的相关系数(r)体现两个变量间的线性关系程度.r:-1,+1;r=1:完全正相关;r=-1:完全负相关;r=0:无线性相关;|r|0.8:强相关;|r|correlate-bivariate.(2)选择计算相关系数的变量到variables框.(3)选择相关系数(correlationcoefficients).(4)显著性检验(testofsignificance)tow-tailed:输出双尾概率P.one-tailed:输出单尾概率P,计算相关系数,(四)其他选项statistics选项:仅当计算简单相关系数时,选择输出哪些统计量.meansandstandarddeviations:均值、标准差;cross-productdeviationsandcovariances:分别输出两变量的离差平方和(sumofsquare分母)、两变量的差积和(cross-products分子)、协方差(covariance以上各个数据除以n-1),计算相关系数,(五)应用举例通过27家企业普通员工人数和管理人员数,利用相关系数分析人数之间的关系*表示t检验值发生的概率小于等于0.05,即总体无相关的可能性小于0.05;*表示t检验值发生的概率小于等于0.01,即总体无相关的可能性小于0.01;*比*,拒绝零假设更可靠.,计算相关系数,(五)应用举例根据若干对双胞胎心理学课程若干次考试的总分,分析双胞胎的成绩是否相关.利用秩,通过计算spearman和kendall相关系数进行分析自动编码生成秩数据后,再计算相关系数,结论相同,偏相关分析,(一)偏相关系数(1)含义:在控制了其他变量的影响下计算两变量的相关系数。虚假相关.如:小学16年级全体学生进行速算比赛(身高和、分数间的相关受年龄的影响)研究商品的需求量和价格、消费者收入之间的关系.因为:需求量和价格之间的相关关系包含了消费者收入对商品需求量的影响;收入对价格也产生影响,并通过价格变动传递到对商品需求量的影响中。又如:粮食产量与平均气温、月降水量、平均日照时间、温度之间的关系的研究。,偏相关分析,(一)偏相关系数(2)计算方法:,偏相关分析,(二)基本操作步骤(1).菜单选项:analyze-correlate-partial(2).选择将参加计算的变量到variable框.(3).选择控制变量到controllingfor框。(4)option选项:zero-ordercorrelations:输出简单相关系数矩阵,回归分析概述,(一)回归分析理解(1)“回归”的含义galton研究研究父亲身高和儿子身高的关系时的独特发现.(2)回归线的获得方式一:局部平均回归曲线上的点给出了相应于每一个x(父亲)值的y(儿子)平均数的估计(3)回归线的获得方式二:拟和函数使数据拟和于某条曲线;通过若干参数描述该曲线;利用已知数据在一定的统计准则下找出参数的估计值(得到回归曲线的近似);,回归分析概述,(二)回归分析的基本步骤(1)确定自变量和因变量(父亲身高关于儿子身高的回归与儿子身高关于父亲身高的回归是不同的).(2)从样本数据出发确定变量之间的数学关系式,并对回归方程的各个参数进行估计.(3)对回归方程进行各种统计检验.(4)利用回归方程进行预测.,线性回归分析概述,(三)参数估计的准则目标:回归线上的预测值与观察值之间的距离总和达到最小最小二乘法(利用最小二乘法拟和的回归直线与样本数据点在垂直方向上的偏离程度最低),一元线性回归分析,例:已知若干个父亲和他们成年儿子的身高,通过父亲的身高预测其成年儿子的平均身高(利用相关分析和回归分析)(一)一元回归方程:y=0+1x0为常数项;1为y对x回归系数,即:x每变动一个单位所引起的y的平均变动(二)一元回归分析的步骤利用样本数据建立回归方程回归方程的拟和优度检验回归方程的显著性检验(t检验和F检验)残差分析预测,一元线性回归方程的检验,(一)拟和优度检验:(1)目的:检验样本观察点聚集在回归直线周围的密集程度,评价回归方程对样本数据点的拟和程度。,(2)思路:因为:因变量取值的变化受两个因素的影响自变量不同取值的影响其他因素的影响如:儿子身高(y)的变化受:父亲身高(x)的影响、其他条件于是:因变量总变差=自变量引起的+其他因素引起的即:因变量总变差=回归方程可解释的+不可解释的可证明:因变量总离差平方和=回归平方和+剩余平方和,一元线性回归方程的检验,(一)拟和优度检验:(3)统计量:判定系数R2=SSR/SST=1-SSE/SST.R2体现了回归方程所能解释的因变量变差的比例;1-R2则体现了因变量总变差中,回归方程所无法解释的比例。R2越接近于1,则说明回归平方和占了因变量总变差平方和的绝大部分比例,因变量的变差主要由自变量的不同取值造成,回归方程对样本数据点拟合得好在一元回归中R2=r2;因此,从这个意义上讲,判定系数能够比较好地反映回归直线对样本数据的代表程度和线性相关性。,一元线性回归方程的检验,(二)回归方程的显著性检验:F检验(1)目的:检验自变量与因变量之间的线性关系是否显著,是否可用线性模型来表示.(2)H0:=0即:回归系数与0无显著差异(3)利用F检验,构造F统计量:F=平均的回归平方和/平均的剩余平方和F(1,n-1-1)如果F值较大,则说明自变量造成的因变量的线性变动远大于随机因素对因变量的影响,自变量于因变量之间的线性关系较显著(4)计算F统计量的值和相伴概率p(5)判断pregression-linear(2)选择一个变量为因变量进入dependent框(3)选择一个变量为自变量进入independent框(4)enter:所选变量全部进入回归方程(默认方法)(5)对样本进行筛选(selectionvariable)利用满足一定条件的样本数据进行回归分析(6)指定作图时各数据点的标志变量(caselabels),一元线性回归分析操作,(二)statistics选项(1)基本统计量输出Estimates:默认.显示回归系数相关统计量.confidenceintervals:每个非标准化的回归系数95%的置信区间.Descriptive:各变量均值、标准差和相关系数单侧检验概率.Modelfit:默认.判定系数、估计标准误差、方差分析表、容忍度(2)Residual框中的残差分析Durbin-waston:D-W值casewisediagnostic:异常值(奇异值)检测(输出预测值及残差和标准化残差),一元线性回归分析操作,(三)plot选项:图形分析.Standardizeresidualplots:绘制残差序列直方图和累计概率图,检测残差的正态性绘制指定序列的散点图,检测残差的随机性、异方差性ZPRED:标准化预测值ZRESID:标准化残差SRESID:学生化残差produceallpartialplot:绘制因变量和所有自变量之间的散点图,线性回归方程的残差分析,(一)残差序列的正态性检验:绘制标准化残差的直方图或累计概率图(二)残差序列的随机性检验绘制残差和预测值的散点图,应随机分布在经过零的一条直线上下,线性回归方程的残差分析,(三)残差序列独立性检验:残差序列是否存在后期值与前期值相关的现象,利用D.W(Durbin-Watson)检验d-w=0:残差序列存在完全正自相关;d-w=4:残差序列存在完全负自相关;0d-w2:残差序列存在某种程度的正自相关;2d-wlinear(2)选择一个变量为因变量进入dependent框(3)选择一个或多个变量为自变量进入independent框(4)选择多元回归分析的自变量筛选方法:enter:所选变量全部进入回归方程(默认方法)remove:从回归方程中剔除变量stepwise:逐步筛选;backward:向后筛选;forward:向前筛选(5)对样本进行筛选(selectionvariable)利用满足一定条件的样本数据进行回归分析(6)指定作图时各数据点的标志变量(caselabels),多元线性回归分析操作,(二)statistics选项(1)基本统计量输出Partandpartialcorrelation:与Y的简单相关、偏相关和部分相关Rsquarechange:每个自变量进入方程后R2及F值的变化量Collinearitydignostics:共线性诊断.,多元线性回归分析操作,(三)options选项:steppingmethodcriteria:逐步筛选法参数设置.useprobabilityofF:以F值相伴概率作为变量进入和剔除方程的标准.一个变量的F值显著性水平小于entry(0.05)则进入方程;大于removal(0.1)则剔除出方程.因此:Entrycurveestimation(3)选择因变量到dependent框(4)选择自变量到independent框或选time以时间作自变量(5)选择模型(R2最高拟和效果最好),曲线估计(curveestimate),(四)其他选项(1)displayANOVAtable:方差分析表(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论