




已阅读5页,还剩52页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
离散型随机变量及其分布律,连续型随机变量,随机变量及其分布函数,第四章随机变量及其分布,1,基本思想,将样本空间数量化,即用数值来表示试验的结果,有些随机试验的结果可直接用数值来表示.,例如:在掷骰子试验中,结果可用1,2,3,4,5,6来表示,例如:掷硬币试验,其结果是用汉字“正面”和“反面”来表示的,可规定:用1表示“正面朝上”用0表示“反面朝上”,有些随机试验的结果不是用数量来表示,但可数量化,4.1随机变量及其分布函数,一、随机变量,2,随机变量的定义,设随机试验的样本空间为,如果对于每一个样本点,均有唯一的实数与之对应,称为样本空间上的随机变量。,3,例1从装有三个白球(记为1,2,3号)与两个黑球(记为4,5号)的袋中任取两个球,设随机变量X表示取出的两个球中白球的个数。在以下两种情形下,X是如何表示的?(1)观察取出的两个球的颜色(2)观察取出的两个球的号码。,解(1)试验的样本点和基本事件,取出第i号球与第j号球,(i,j),(2)试验的样本点和基本事件,4,用随机变量表示事件,如在掷骰子试验中,用X表示出现的点数,则A=“出现偶数点”可表示为:X=2X=4X=6B=“出现的点数小于”可表示为:X4或X3,P(A)=P(X=2X=4X=6),P(B)=P(X4)=P(X3),也可以是等式或是不等式。,=P(X=2)+P(X=4)+P(X=6),5,引入随机变量。随机事件由:样本点的集合随机变量的取值区间概率的确定函数的计算这个函数就是随机变量的概率分布函数,随机变量,样本点,纯数学计算,概率,事件,区间/数集,6,二、随机变量的分布函数,设X为一随机变量,则对任意实数x,Xx是一个随机事件,称,为随机变量X的分布函数,F(x)是一个普通的函数!,DistributionFunction,分布函数的定义,7,分布函数的性质,单调不减性,非负有界性0F(x)1,不可能事件,必然事件,右连续性,反之,具有上述四个性质的实函数,必是某个随机变量的分布函数。故该四个性质是分布函数的充分必要性质。,规范性,8,问一问,能否作为某一随机变量的分布函数?,不是,因为,9,例2设一袋中,依次有标着1、2、2、2、3、3数字的6个球,从中任取一球,令X表示所取球上的数字,求X的分布函数。,解X可能取的值为1,2,3,且,当x-1时,Xx是一个不可能事件,故,当-1x2时,,Xx,=X=1,,故,当2x3时,,Xx,=X=1X=2,,故,当3x时,Xx是一个必然事件,故,即,X的分布函数为,10,引进分布函数F(x)后,事件的概率都可以用F(x)的函数值来表示。,分布函数表示事件的概率,P(Xb)=F(b),P(aa)=1P(Xa)=1-F(a),P(Xb),P(Xb),P(Xb),=F(b-0),=1-F(b-0),=F(b)F(b-0),11,4.2离散型随机变量,称此式为X的分布律(列)或概率分布(Probabilitydistribution),设离散型随机变量的所有可能取值是,而取值的概率为,即,一、离散型随机变量的分布律,12,随机变量X的概率分布全面表达了X的所有可能取值以及取各个值的概率情况,离散随机变量分布律的表格表示法,公式法,表格法,性质,13,例3设离散型随机变量X的分布律为,P(X=xi)=pii=1、2、,其中0p1,求p值。,解:,P461,14,例4设袋中有5个球,编号分别为1、2、5,从中同时取出3个球,以X表示取出球的最小号码,求X的分布律与分布函数。,解:X的所有可能取值为1,2,3,且由古典概率公式可得,即X的分布律为,故,X的分布函数,15,一般地,对离散型随机变量XP(X=xk)pk,k1,2,其分布函数为,16,例2中,得到X的分布律为,求取得的球上的数字是非负的概率,P(0X)=P(X=2)+P(X=3),分布律确定事件的概率,例5,解,取得的球上的数字是非负的X0,X=2X=3,=1/2+1/3=5/6,17,二、几种常见的离散型分布,0-1分布(二点分布),则称X服从参数为p的二点分布或(0-1)分布,背景:样本空间可划分为两种结果的情况都可以用两点分布来描述。,如:上抛一枚硬币。,定义:若随机变量X的分布律为:,18,其中0p0,则称X服从参数为的泊松分布,XP(),25,服务台在某时间段内接待的服务次数X;候车的旅客数Y;矿井在某段时间发生事故的次数;显微镜下相同大小的方格内微生物的数目;单位体积空气中含有某种微粒的数目,体积相对小的物质在较大的空间内的稀疏分布,都可以看作泊松分布,其参数可以由观测值的平均值求出。,举例,26,例10在一个放射性物质的试验中,共观察了N=2608次,每次观察的时间为7.5秒,并记录到达指定区域内的质点数。,27,例11设每分钟通过某交通道口的汽车流量X服从泊松分布,且已知在一分钟内无汽车通过与恰有一辆汽车通过的概率相等,求一分钟内至少有两辆汽车通过的概率。,解:设XP(),,由P(X=0)=P(X=1),知,故有=1,,因此所求概率为,P(X2),=1P(X=0)P(X=1),28,泊松定理,实际应用中:当n较大,p较小,np适中时,即可用泊松公式近似替换二项概率公式,二项分布的泊松近似,ThePoissonApproximationtotheBinomialDistribution,29,几何分布,若随机变量X的分布律为,则称X服从几何分布。,P(X=k)=,其中p+q=1,0p1,例12在一个贝努里试验中,每次试验成功的概率为p,失败的概率为q=1-p(0p1),设试验进行到第X次才出现成功,求X的分布律。,X的取值为1,2,且相应的概率为,P4711,解:,30,4.3连续随机变量,定义,设X为一随机变量,分布函数为F(x),若存在非负实函数f(x),使对任意实数x,有,则称X为连续型随机变量,f(x)称为X的概率密度函数,简称概率密度或密度函数.,Probabilitydensityfunctionp.d.f.,一、概率密度函数的定义,31,二、概率密度函数的性质,1、非负性,2、规范性,可以根据这两个性质来判断一个函数是不是某个连续型随机变量的密度函数。,32,3、密度函数在区间上的积分=随机变量在区间上取值的概率,33,4、密度函数和分布函数的关系,积分关系,导数关系,概率密度f(x)不是随机变量X取值x的概率,而是X在点x的概率分布的密集程度,f(x)的大小能反映出X取x的附近的值的概率大小.,34,连续型随机变量的分布函数在实数域内处处连续,P(X=a)=0,P(aXb)=P(aXb)=P(aXb)=P(a2)1P(X2),1F(2),36,例14设连续型随机变量X的密度函数为,求:1、c的值;2、F(x);3、P(1X1)。,解:1、,因为,37,2、,积分区域:(,x,(1),(2),(3),38,3、,P(1X1),F(1)F(1),1/8.,或利用密度函数求概率:,P(1X1),39,1、均匀分布,若连续型随机变量X的概率密度为,则称X在区间(a,b)上服从均匀分布记为XU(a,b),定义,分布函数,三、几种常用的连续型分布,40,X“等可能”地取区间(a,b)中的值,这里的“等可能”理解为:X落在区间(a,b)中任意等长度的子区间内的可能性是相同的。或者说它落在子区间内的概率只依赖于子区间的长度而与子区间的位置无关。,意义,41,例15102电车每5分钟发一班,在任一时刻某一乘客到了车站。求乘客候车时间不超过2分钟的概率。,解:设随机变量X为候车时间,则X服从(0,5)上的均匀分布,即,XU(0,5),,则X的密度函数,故所求概率为,42,例16设K在-1,5上服从均匀分布,求方程,有实根的概率。,解:方程有实数根,即,而的密度函数为,故所求概率为,43,2、指数分布,若连续型随机变量X的概率密度为,定义,分布函数,则称X服从参数为的指数分布.,44,例14设打一次电话所用时间XE(0.2),(单位:分),若刚好有人先你进入公用电话亭(只有一台电话),求:(1)你等待时间超过5分钟的概率,(2)你等待时间在5分钟到10分钟的概率。,解:因为XE(0.2),故其密度函数为,故所求概率分别为,(1)P(X5)=,(2)P(5X10)=,45,3、正态分布,若随机变量X的密度函数为,则称X服从参数为,的正态分布。,记为,分布函数为,46,(1)单峰对称密度曲线关于直线x=对称;(p43)(2)f()maxf(x),正态分布的几个特性:,47,(3)的大小直接影响概率的分布越大,曲线越平坦,越小,曲线越陡峻,。正态分布也称为高斯(Gauss)分布,48,标准正态分布,标准正态分布,性质,密度函数,分布函数,当b0时,,的值可由表查得,49,50,解,51,定理:,,对X进行标准化,得,则,而标准正态分布的分布函数的函数值可以查表求得。,例16,解,52,解,特别地,当k=3时,,本题结果称为3原则.在工程应用中,通常认为,忽略的值.如在质量控制中,常用标准指标值3作两条线,当生产过程的指标观察值落在两线之外时发出警报.表明生产出现异常.,53,例18将一温度调节器放置在贮存着某种液体的容器内,调节器整定在d,液体温度X(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年SET标准电子签名认证系统安全审查及优化合同
- 2025年智能硬件产品定制加工技术保密及知识产权保护协议
- 2025年小区门卫服务及社区文化活动参与管理合同
- 2025年新能源汽车核心部件玻璃纤维增强塑料供应与组装合同
- 2025年新型环保爆破施工方案设计与咨询服务合同
- 2025年医疗耗材采购及全国物流配送与售后服务合同
- 2025年综合性医院消防设施设备采购与维护服务合同
- 住房租赁合同
- 儿科中医知识试题及答案
- 本科中医内科试题及答案
- 养老护理员基础照护试题(含参考答案)
- 教师职业技能提升培训教程
- 2025年安徽省宿州市辅警协警笔试笔试测试卷(含答案)
- 2025年医院财务科招聘考试题目(附答案)
- 高血压病例汇报
- 六年级上册语文1-8单元习作范文
- 第10课 公共场所言行文明 第1课时(课件)2025-2026学年道德与法治三年级上册统编版
- 2025年污水操作考试题库及答案
- 2025年江西九江辅警考试题目及答案
- 2025至2030中国AI工业质检行业市场发展现状及布局案例与发展趋势分析与未来投资战略咨询研究报告
- 物业管理员职业技能大赛线上试题及答案
评论
0/150
提交评论