

已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2012年山东省高考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1(5分)若复数z满足z(2i)=11+7i(i为虚数单位),则z为()A3+5iB35iC3+5iD35i2(5分)已知全集U=0,1,2,3,4,集合A=1,2,3,B=2,4,则(UA)B为()A1,2,4B2,3,4C0,2,3,4D0,2,43(5分)函数f(x)=+的定义域为()A2,0)(0,2B(1,0)(0,2C2,2D(1,24(5分)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A众数B平均数C中位数D标准差5(5分)设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线x=对称则下列判断正确的是()Ap为真Bq为假Cpq为假Dpq为真6(5分)设变量x,y满足约束条件,则目标函数z=3xy的取值范围是()ABC1,6D7(5分)执行如图的程序框图,如果输入a=4,那么输出的n的值为()A5B4C3D28(5分)函数y=2sin()(0x9)的最大值与最小值之和为()A2B0C1D19(5分)圆(x+2)2+y2=4与圆(x2)2+(y1)2=9的位置关系为()A内切B相交C外切D相离10(5分)函数y=的图象大致为()ABCD11(5分)已知双曲线C1:=1(a0,b0)的离心率为2,若抛物线C2:x2=2py(p0)的焦点到双曲线C1的涟近线的距离是2,则抛物线C2的方程是()ABx2=yCx2=8yDx2=16y12(5分)设函数,g(x)=x2+bx若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()Ax1+x20,y1+y20Bx1+x20,y1+y20Cx1+x20,y1+y20Dx1+x20,y1+y20二、填空题:本大题共4小题,每小题4分,共16分.13(4分)如图,正方体ABCDA1B1C1D1的棱长为1,E为线段B1C上的一点,则三棱锥ADED1的体积为14(4分)如图是根据部分城市某年6月份的平均气温(单位:)数据得到的样本频率分布直方图,其中平均气温的范围是20.5,26.5,样本数据的分组为20.5,21.5),21.5,22.5),22.5,23.5),23.5,24.5),24.5,25.5),25.5,26.5已知样本中平均气温低于22.5的城市个数为11,则样本中平均气温不低于25.5的城市个数为15(4分)若函数f(x)=ax(a0,a1)在1,2上的最大值为4,最小值为m,且函数在0,+)上是增函数,则a=16(4分)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动当圆滚动到圆心位于(2,1)时,的坐标为三、解答题:本大题共6小题,共74分.17(12分)在ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC()求证:a,b,c成等比数列;()若a=1,c=2,求ABC的面积S18(12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2()从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;()现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率19(12分)如图,几何体EABCD是四棱锥,ABD为正三角形,CB=CD,ECBD()求证:BE=DE;()若BCD=120,M为线段AE的中点,求证:DM平面BEC20(12分)已知等差数列an的前5项和为105,且a10=2a5()求数列an的通项公式;()对任意mN*,将数列an中不大于72m的项的个数记为bm求数列bm的前m项和Sm21(13分)如图,椭圆M:+=1(ab0)的离心率为,直线x=a和y=b所围成的矩形ABCD的面积为8()求椭圆M的标准方程;()设直线l:y=x+m(mR)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T求的最大值及取得最大值时m的值22(13分)已知函数为常数,e=2.71828是自然对数的底数),曲线y=f(x)在点(1,f(1)处的切线与x轴平行()求k的值;()求f(x)的单调区间;()设g(x)=xf(x),其中f(x)为f(x)的导函数证明:对任意x0,g(x)1+e22012年山东省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1(5分)(2012山东)若复数z满足z(2i)=11+7i(i为虚数单位),则z为()A3+5iB35iC3+5iD35i【分析】等式两边同乘2+i,然后化简求出z即可【解答】解:因为z(2i)=11+7i(i为虚数单位),所以z(2i)(2+i)=(11+7i)(2+i),即5z=15+25i,z=3+5i故选A2(5分)(2012山东)已知全集U=0,1,2,3,4,集合A=1,2,3,B=2,4,则(UA)B为()A1,2,4B2,3,4C0,2,3,4D0,2,4【分析】由题意,集合UA=0,4,从而求得(UA)B=0,2,4【解答】解:UA=0,4,(UA)B=0,2,4;故选D3(5分)(2012山东)函数f(x)=+的定义域为()A2,0)(0,2B(1,0)(0,2C2,2D(1,2【分析】分式的分母不为0,对数的真数大于0,被开方数非负,解出函数的定义域【解答】解:要使函数有意义,必须:,所以x(1,0)(0,2所以函数的定义域为:(1,0)(0,2故选B4(5分)(2012山东)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A众数B平均数C中位数D标准差【分析】利用众数、平均数、中位标准差的定义,分别求出,即可得出答案【解答】解:A样本数据:82,84,84,86,86,86,88,88,88,88B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错平均数86,88不相等,B错中位数分别为86,88,不相等,C错A样本方差S2=(8286)2+2(8486)2+3(8686)2+4(8886)2=4,标准差S=2,B样本方差S2=(8488)2+2(8688)2+3(8888)2+4(9088)2=4,标准差S=2,D正确故选D5(5分)(2012山东)设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线x=对称则下列判断正确的是()Ap为真Bq为假Cpq为假Dpq为真【分析】由题设条件可先判断出两个命题的真假,再根据复合命题真假的判断规则判断出选项中复合命题的真假即可得出正确选项【解答】解:由于函数y=sin2x的最小正周期为,故命题p是假命题;函数y=cosx的图象关于直线x=k对称,kZ,故q是假命题结合复合命题的判断规则知:q为真命题,pq为假命题,pq为是假命题故选C6(5分)(2012山东)设变量x,y满足约束条件,则目标函数z=3xy的取值范围是()ABC1,6D【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;由目标函数中z的几何意义可求z的最大值与最小值,进而可求z的范围【解答】解:作出不等式组表示的平面区域,如图所示由z=3xy可得y=3xz,则z为直线y=3xz在y轴上的截距,截距越大,z越小结合图形可知,当直线y=3xz平移到B时,z最小,平移到C时z最大由可得B(,3),由可得C(2,0),zmax=6故选A7(5分)(2012山东)执行如图的程序框图,如果输入a=4,那么输出的n的值为()A5B4C3D2【分析】执行程序框图,依次写出每次循环得到的P,Q值,不满足条件PQ,程序终止即可得到结论【解答】解:执行程序框图,有n=0,01,P=1,Q=3,n=1;n=1,13,P=1+4=5,Q=7,n=2;n=2,57,P=5+16=21,Q=15,n=3;n=3,2115不成立,输出,n=3;故选:C8(5分)(2012山东)函数y=2sin()(0x9)的最大值与最小值之和为()A2B0C1D1【分析】通过x的范围,求出的范围,然后求出函数的最值【解答】解:因为函数,所以,所以,所以函数的最大值与最小值之和为故选A9(5分)(2012山东)圆(x+2)2+y2=4与圆(x2)2+(y1)2=9的位置关系为()A内切B相交C外切D相离【分析】求出两圆的圆心和半径,计算两圆的圆心距,将圆心距和两圆的半径之和或半径之差作对比,判断两圆的位置关系【解答】解:圆(x+2)2+y2=4的圆心C1(2,0),半径r=2圆(x2)2+(y1)2=9的圆心C2(2,1),半径R=3,两圆的圆心距d=,R+r=5,Rr=1,R+rdRr,所以两圆相交,故选B10(5分)(2012山东)函数y=的图象大致为()ABCD【分析】由于函数y=为奇函数,其图象关于原点对称,可排除A,利用极限思想(如x0+,y+)可排除B,C,从而得到答案D【解答】解:令y=f(x)=,f(x)=f(x),函数y=为奇函数,其图象关于原点对称,可排除A;又当x0+,y+,故可排除B;当x+,y0,故可排除C;而D均满足以上分析故选D11(5分)(2012山东)已知双曲线C1:=1(a0,b0)的离心率为2,若抛物线C2:x2=2py(p0)的焦点到双曲线C1的涟近线的距离是2,则抛物线C2的方程是()ABx2=yCx2=8yDx2=16y【分析】利用双曲线的离心率推出a,b的关系,求出抛物线的焦点坐标,通过点到直线的距离求出p,即可得到抛物线的方程【解答】解:双曲线C1:的离心率为2所以,即:=4,所以;双曲线的渐近线方程为:抛物线的焦点(0,)到双曲线C1的渐近线的距离为2,所以2=,因为,所以p=8抛物线C2的方程为x2=16y故选D12(5分)(2012山东)设函数,g(x)=x2+bx若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()Ax1+x20,y1+y20Bx1+x20,y1+y20Cx1+x20,y1+y20Dx1+x20,y1+y20【分析】构造函数设F(x)=x3bx2+1,则方程F(x)=0与f(x)=g(x)同解,可知其有且仅有两个不同零点x1,x2利用函数与导数知识求解【解答】解:设F(x)=x3bx2+1,则方程F(x)=0与f(x)=g(x)同解,故其有且仅有两个不同零点x1,x2由F(x)=0得x=0或这样,必须且只须F(0)=0或,因为F(0)=1,故必有由此得不妨设x1x2,则所以,比较系数得,故.,由此知,故选B二、填空题:本大题共4小题,每小题4分,共16分.13(4分)(2012山东)如图,正方体ABCDA1B1C1D1的棱长为1,E为线段B1C上的一点,则三棱锥ADED1的体积为【分析】将三棱锥ADED1选择ADD1为底面,E为顶点,进行等体积转化V ADED1=V EADD1后体积易求【解答】解:将三棱锥ADED1选择ADD1为底面,E为顶点,则V ADED1=V EADD1,其中SADD1=SA1D1DA=,E到底面ADD1的距离等于棱长1,故故答案为:14(4分)(2012山东)如图是根据部分城市某年6月份的平均气温(单位:)数据得到的样本频率分布直方图,其中平均气温的范围是20.5,26.5,样本数据的分组为20.5,21.5),21.5,22.5),22.5,23.5),23.5,24.5),24.5,25.5),25.5,26.5已知样本中平均气温低于22.5的城市个数为11,则样本中平均气温不低于25.5的城市个数为9【分析】由频率分布直方图,先求出平均气温低于22.5的频率,不低于25.5的频率,利用频数=频率样本容量求解【解答】解:平均气温低于22.5的频率,即最左边两个矩形面积之和为0.101+0.121=0.22,所以总城市数为110.22=50,平均气温不低于25.5的频率即为最右面矩形面积为0.181=0.18,所以平均气温不低于25.5的城市个数为500.18=9故答案为:915(4分)(2012山东)若函数f(x)=ax(a0,a1)在1,2上的最大值为4,最小值为m,且函数在0,+)上是增函数,则a=【分析】根据指数函数的性质,需对a分a1与0a1讨论,结合指数函数的单调性可求得g(x),根据g(x)的性质即可求得a与m的值【解答】解:当a1时,有a2=4,a1=m,此时a=2,m=,此时g(x)=为减函数,不合题意;若0a1,则a1=4,a2=m,故a=,m=,g(x)=在0,+)上是增函数,符合题意故答案为:16(4分)(2012山东)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动当圆滚动到圆心位于(2,1)时,的坐标为(2sin2,1cos2)【分析】设滚动后圆的圆心为O,切点为A,连接OP过O作与x轴正方向平行的射线,交圆O于B(3,1),设BOP=,则根据圆的参数方程,得P的坐标为(2+cos,1+sin),再根据圆的圆心从(0,1)滚动到(2,1),算出=2,结合三角函数的诱导公式,化简可得P的坐标为(2sin2,1cos2),即为向量的坐标【解答】解:设滚动后的圆的圆心为O,切点为A(2,0),连接OP,过O作与x轴正方向平行的射线,交圆O于B(3,1),设BOP=O的方程为(x2)2+(y1)2=1,根据圆的参数方程,得P的坐标为(2+cos,1+sin),单位圆的圆心的初始位置在(0,1),圆滚动到圆心位于(2,1)AOP=2,可得=2可得cos=cos(2)=sin2,sin=sin(2)=cos2,代入上面所得的式子,得到P的坐标为(2sin2,1cos2)的坐标为(2sin2,1cos2)故答案为:(2sin2,1cos2)三、解答题:本大题共6小题,共74分.17(12分)(2012山东)在ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC()求证:a,b,c成等比数列;()若a=1,c=2,求ABC的面积S【分析】(I)由已知,利用三角函数的切化弦的原则可得,sinB(sinAcosC+sinCcosA)=sinAsinC,利用两角和的正弦公式及三角形的内角和公式代入可得sin2B=sinAsinC,由正弦定理可证(II)由已知结合余弦定理可求cosB,利用同角平方关系可求sinB,代入三角形的面积公式S=可求【解答】(I)证明:sinB(tanA+tanC)=tanAtanCsinB()=sinB=sinB(sinAcosC+sinCcosA)=sinAsincsinBsin(A+C)=sinAsinC,A+B+C=sin(A+C)=sinB即sin2B=sinAsinC,由正弦定理可得:b2=ac,所以a,b,c成等比数列(II)若a=1,c=2,则b2=ac=2,0BsinB=ABC的面积18(12分)(2012山东)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2()从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;()现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率【分析】()由列举法可得从五张卡片中任取两张的所有情况,分析可得两张卡片的颜色不同且标号之和小于4的情况数目,由古典概型公式,计算可得答案;()加入一张标号为0的绿色卡片后,共有六张卡片,由列举法可得从中任取两张的所有情况,分析可得两张卡片的颜色不同且标号之和小于4的情况数目,由古典概型公式,计算可得答案【解答】解:(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2其中两张卡片的颜色不同且标号之和小于4的有红1蓝1、红1蓝2、红2蓝1,共3种情况,故所求的概率为(II)加入一张标号为0的绿色卡片后,共有六张卡片,从六张卡片中任取两张,有红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2,红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,共有15种情况,其中颜色不同且标号之和小于4的有红1蓝1,红1蓝2,红2蓝1,红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,共8种情况,所以概率为19(12分)(2012山东)如图,几何体EABCD是四棱锥,ABD为正三角形,CB=CD,ECBD()求证:BE=DE;()若BCD=120,M为线段AE的中点,求证:DM平面BEC【分析】(1)设BD中点为O,连接OC,OE,则COBD,CEBD,于是BD平面OCE,从而BDOE,即OE是BD的垂直平分线,问题解决;(2)证法一:取AB中点N,连接MN,DN,MN,易证MN平面BEC,DN平面BEC,由面面平行的判定定理即可证得平面DMN平面BEC,又DM平面DMN,于是DM平面BEC;证法二:延长AD,BC交于点F,连接EF,易证AB=AF,D为线段AF的中点,连接DM,则DMEF,由线面平行的判定定理即可证得结论【解答】证明:(I)设BD中点为O,连接OC,OE,则由BC=CD知,COBD,又已知CEBD,ECCO=C,所以BD平面OCE所以BDOE,即OE是BD的垂直平分线,所以BE=DE(II)证法一:取AB中点N,连接MN,DN,M是AE的中点,MNBE,又MN平面BEC,BE平面BEC,MN平面BEC,ABD是等边三角形,BDN=30,又CB=CD,BCD=120,CBD=30,NDBC,又DN平面BEC,BC平面BEC,DN平面BEC,又MNDN=N,故平面DMN平面BEC,又DM平面DMN,DM平面BEC证法二:延长AD,BC交于点F,连接EF,CB=CD,BCD=120,CBD=30,ABD是等边三角形,BAD=60,ABC=90,因此AFB=30,AB=AF,又AB=AD,D为线段AF的中点,连接DM,DMEF,又DM平面BEC,EF平面BEC,DM平面BEC20(12分)(2012山东)已知等差数列an的前5项和为105,且a10=2a5()求数列an的通项公式;()对任意mN*,将数列an中不大于72m的项的个数记为bm求数列bm的前m项和Sm【分析】(I)由已知利用等差数列的通项公式及求和公式代入可求a1,d,从而可求通项(II)由(I)及已知可得,则可得,可证bm是等比数列,代入等比数列的求和公式可求【解答】解:(I)由已知得:解得a1=7,d=7,所以通项公式为an=7+(n1)7=7n(II)由,得n72m1,即=49bm是公比为49的等比数列,21(13分)(2012山东)如图,椭圆M:+=1(ab0)的离心率为,直线x=a和y=b所围成的矩形ABCD的面积为8()求椭圆M的标准方程;()设直线l:y=x+m(mR)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T求的最大值及取得最大值时m的值【分析】()通过椭圆的离心率,矩形的面积公式,直接求出a,b,然后求椭圆M的标准方程;() 通过,利用韦达定理求出|PQ|的表达式,通过判别式推出的m的范围,当时,求出取得最大值利用由对称性,推出,取得最大值当1m1时,取得最大值求的最大值及取得最大值时m的值【解答】解:(I)矩形ABCD面积为8,即2a2b=8由解得:a=2,b=1,椭圆M的标准方程是(II),由=64m220(4m24)0得设P(x1,y1),Q(x2,y2),则,当l过A点时,m=1,当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 22002-6:2025 EN Prerequisite programmes on food safety - Part 6: Feed and animal food production
- 【正版授权】 IEC 60749-34-1:2025 EN-FR Semiconductor devices - Mechanical and climatic test methods - Part 34-1: Power cycling test for power semiconductor module
- 【正版授权】 IEC 60068-3-14:2025 FR Environmental testing – Part 3-14: Supporting documentation and guidance – Developing a climatic sequential test
- GB/T 6447-2025文献摘要编写规则
- 校园超市消防知识培训内容课件
- 校园消防知识培训课件演练
- 校园消防知识培训内容课件
- 药师专业考试试题及答案
- 初级底盘考试题及答案
- 金桥劳务面试题及答案
- 人教版(2024)数学七年级上册期末测试卷(含答案)
- 数字化数据中台技术方案
- 锁骨骨折的护理课件
- 《物业管理法规》课件
- 2024华为干部管理资料第7版
- 《复活》(节选)列夫托尔斯泰-精讲课件
- (完整版)投标文件范本(格式)
- 中国风肺胀中医护理方案
- GB/T 10433-2024紧固件电弧螺柱焊用螺柱和瓷环
- 2024年样板注塑机转让合同范本
- 医院耗材供货服务方案
评论
0/150
提交评论