《晶体的X射线衍射》PPT课件_第1页
《晶体的X射线衍射》PPT课件_第2页
《晶体的X射线衍射》PPT课件_第3页
《晶体的X射线衍射》PPT课件_第4页
《晶体的X射线衍射》PPT课件_第5页
已阅读5页,还剩65页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章晶体的X射线衍射,X射线衍射是研究晶体结构最有效的手段。除了X射线衍射外还有电子衍射(适合薄膜)、中子衍射(研究氢、碳在晶体中的位置)等。共同特点:波长和晶格常数是同量级(零点几个纳米),1)X射线(X-ray),1895年伦琴发现用高速电子冲击固体时,有一种新射线从固体上发出来。,性质(Properties):,具有很强的穿透能力,能使照片感光,空气电离。本质是什么?不知道,就叫“X射线”吧!,当时人们以照X射线像为时髦。,21X射线简介,发现的X射线是什么呢?人们初步认为是一种电磁波,于是想通过光栅来观察它的衍射现象,但实验中并没有看到衍射现象。原因是X射线的波长太短,只有一埃(1)。,一光栅d=3104(每mm333条刻痕),实际上是无法分辩的。要分辩X射线的光栅也要在埃的数量级才行。,人们想到了晶体。因为晶体有规范的原子排列,且原子间距也在埃的数量级。是天然的三维光栅。,2)Lauespots,1912年德国物理学家劳厄想到了这一点,去找普朗克老师,没得到支持后,去找正在攻读博士的索末菲,两次实验后终于做出了X射线的衍射实验。,X射线X-ray,晶体crystal,劳厄斑Lauespots,LauespotsproveswavepropertiesofX-ray.,3)布喇格定律Braggslaw,1913年英国布喇格父子(W.H.bragg和W.L.Bragg)建立了一个公式-布喇格公式。不但能解释劳厄斑点,而且能用于对晶体结构的研究。,布喇格父子认为当能量很高的X射线射到晶体各层面的原子时,原子中的电子将发生强迫振荡,从而向周围发射同频率的电磁波,即产生了电磁波的散射,而每个原子则是散射的子波波源;劳厄斑正是散射的电磁波的叠加。,4)X射线衍射的应用,?,?,1953年,用于测定“DNA”脱氧核糖核酸的双螺旋结构就是用的此法。,原理:,X射线分析仪,已知X射线的波长测定晶体的晶格常数。,世界闻名的事件:,X射线的波长0.01100nm用于测定晶体结构的Xray的波长0.050.25nm用X光管在高压下加速电子,冲击Mo靶或Cu靶产生X射线,用金属滤片或单色器单色化。(),衍射分析技术的发展,与X射线及晶体衍射有关的部分诺贝尔奖获得者名单,2-2倒格子和布里渊区,为了以后计算上的方便,我们引入一个新的概念倒格子。引入设想:如果晶格的基矢未知,只有一些周期性分布的点,这些点与晶格中的每族晶面对应,通过对应关系求出未知晶格的基矢,那么这些点组成的格子就是倒格子。,倒格子并非物理上的格子,只是一种数学处理方法,它在分析与晶体周期性有关的各种问题中起着重要作用。,一、倒格子的定义,假设晶格的原胞基矢为、,原胞体积为,建立一个实的空间,其基矢为,由这组基矢构成的格子称为对应于以、为基矢的正格子的倒易格子(简称倒格子)、称为倒格子基矢。,从数学上讲,倒易点阵和布喇菲点阵是互相对应的傅里叶空间。,倒易空间的格矢量:,倒格矢的量纲:1/长度,例1:简立方格子的倒格子。,例2:二维四方格子,其基矢为。,此时可假设一个垂直于平面的单位矢量,再计算、。,1、正格子基矢和倒格子基矢的关系,二、正、倒格子之间的关系,证明如下:a1b1=2a1(a2a3)/a1(a2a3)=2因为倒格子基矢与不同下脚标的正格子基矢垂直,有:a2b1=0a3b1=0,(为倒格子原胞体积。),2、倒格子原胞体积是正格子原胞体积倒数的(2)3倍,证明:,利用:,所以:,3、倒格矢是晶面指数为所对应的晶面族的法线。,晶面族(h1h2h3)最靠近原点O的晶面ABC在基矢a1,a2,a3上的截距:a1/h1,a2/h2,a3/h3,矢量:,同理:,证明:,得证!,4、倒格矢与晶面间距关系为,因为Kh垂直于ABC面,所以面间距:,晶面族(h1h2h3)中离原点距离为dh的晶面方程:,X是晶面上任意点的位矢,对于格点其位移矢为:,推论:,1、如果有一矢量与正格矢点乘后等于2的整数倍,这个矢量一定是倒格矢。,2、如果有一矢量与正格矢点乘后为一个没有量纲的数,这个矢量一定能在倒空间中表示出来。,倒格矢的性质:,1),是密勒指数为所对应的晶面族的法线。,2),所以倒格矢可以代表晶面。,定义:任选一倒格点为原点,从原点向它的第一、第二、第三近邻倒格点画出倒格矢,并作这些倒格矢的中垂面,这些中垂面绕原点所围成的多面体称第一B.Z,其“体积”为倒格子原胞体积*b1(b2b3),三、布里渊区,说明,并不是原点仅到最近邻的倒格点的倒格矢的中垂面所围成的区域叫第一B.Z;第一B.Z又可表述为从原点出发,不与任何中垂面相交,所能达到的倒空间区域。第nB.Z则是从原点出发跨过(n1)个倒格矢中垂面所达到的区域;各级B.Z体积相等。,布里渊区界面方程KhK,由晶面方程:当x换为倒格矢中垂面上的任意波矢k时,得到布里渊区界面方程,由于,为倒格矢,h为整数,有,(由于为任意格矢),即:,在空间中,是以倒格矢为周期的周期函数,仍可将波矢限制在简约区或第一布里渊区中,将原点取在简约区的中心,那么,在布里渊区边界面上周期对应的两点间应满足关系:,布里渊区边界面方程,布里渊区的几何作图法:,根据晶体结构,作出该晶体的倒易空间点阵,任取一个倒格点为原点;,布里渊区的边界面是倒格矢的垂直平分面。,由近到远作各倒格矢的垂直平分面;,在原点周围围成一个包含原点在内的最小封闭体积,即为简约区或第一布里渊区。,简约区就是倒易空间中的WignerSeitz原胞。,可以证明,每个布里渊区的体积均相等,都等于第一布里渊区的体积,即倒格子原胞的体积b。,体心立方晶格的倒格子与简约区,面心立方晶格的倒格子与简约区,2-3晶体的衍射条件,1)s0和s分别为入射、衍射X射线的单位矢量,可以看成是平行光2)散射前后波长不变,两个基本假设:,OP为任一位矢,Rm=ma+nb+pc,a,b,c为晶胞基失,m,n,p是整数做OAS,PBS0,光程差=AP-OB=SRm-S0Rm=Rm(S-S0),衍射加强的条件:=,为整数,为X射线的波长即:Rm(S-S0)=,则,Rm(k-k0)=2劳厄方程(倒空间),k-k0=nKh(n为整数,是衍射级数)夫琅和费衍射,1劳厄方程(衍射方程),2布拉格方程(反射方程),nkh2kSin,2dhSinn布拉格方程(正空间),根据劳厄方程:,实际上:劳厄方程和布拉格方程是等价的,x-ray作用于多原子面上,经两相邻原子面反射的反射波光程差:R=2dsin,布拉格方程:,干涉加强条件(布拉格方程)为:式中:n整数,“反射”级数(衍射级数)一组(hkl)随n值的不同,可产生n个不同方向的反射线。布拉格角(入射线与晶面)半衍射角,原子内所有电子的散射波的振幅的几何和与一个电子的散射波的振幅之比f,是原子散射能力的度量,其大小依赖于原子内电子的数目及分布(r)。,2-4原子散射因子和几和结构因子,1原子散射因子:,2结构因子FHKL,定义:FHKL表征单胞的相干散射与单电子散射之间的对应关系。,数学表达式(计算公式),式中:FHKL(HKL)晶面的结构因子。沿(HKL)晶面族反射方向的散射能力。n晶胞中的原子数fj原子的散射因子(直接查表)HKL晶面指数xjyjzj原子坐标,最简单情况,简单晶胞,仅在坐标原点(0,0,0)处含有一个原子的晶胞,即F与hkl无关,所有晶面均有反射。,底心晶胞:两个原子,(0,0,0)(,0),(h+k)一定是整数,分两种情况:(1)如果h和k均为偶数或均为奇数,则和为偶数F=2fF2=4f2,(2)如果h和k一奇一偶,则和为奇数,F=0F2=0,不论哪种情况,l值对F均无影响。111,112,113或021,022,023的F值均为2f。011,012,013或101,102,103的F值均为0。,体心晶胞,两原子坐标分别是(0,0,0)和(1/2,1/2,1/2),即对体心晶胞,(h+k+l)等于奇数时的衍射强度为0。例如(110),(200),(211),(310)等均有散射;而(100),(111),(210),(221)等均无散射,当(h+k+l)为偶数,F=2f,F2=4f2当(h+k+l)为奇数,F=0,F2=0,面心晶胞:四个原子坐标分别是(000)和(0),(0),(0)。,当h,k,l为全奇或全偶,(h+k),(k+l)和(h+l)必为偶数,故F=4f,F2=16f2,当h,k,l中有两个奇数或两个偶数时,则在(h+k),(k+l)和(h+l)中必有两项为奇数,一项为偶数,故F=0,F2=0,所以(111),(200),(220),(311)有反射,而(100),(110),(112),(221)等无反射。,结构消光:,衍射线I=0,衍射线消失,系统消光。(原子在晶胞中的位置不同引起某些方向衍射线的消失-点阵消光)。尽管满足衍射条件,因F=0使衍射线消失的现象。对于体心点阵,可以产生衍射的晶面为110、200、211、220、221、310,非结构消光:f,如KCl,KBr,结构因子,衍射产生的充分必要条件是:满足布拉格方程结构因子不为0,如金属钠Na立方I,.,.,.,.,.,.,.,.,.,(1/2,1/2,1/2),(0,0,0),如图晶胞中含有两个原子81/8+1=2原子分数坐标为(0,0,0)和(1/2,1/2,1/2),依欧拉公式,讨论:当H+K+L=偶数,出现强衍射,当H+K+L=奇数,不出现衍射,系统消光:由Lane和Bragg方程应产生的部分衍射而系统消失的现象。,由消光规律可以确定晶体所属的空间群,点阵型式体心I面心F底心C简单P,系统消光条件H+K+L=奇数H,K,L奇偶混杂H+K=奇数无消光现象,除上述消光条件外,晶体结构中存在某螺旋轴和滑移面时,,等类型的衍射也可能出现系统消光。,金刚石虽然是面心点阵结构,但每个点阵点代表两个碳原子,故金刚石结构中,每个晶胞中有8个碳原子,其分数坐标分别为(0,0,0),(1/2,1/2,0),(0,1/2,1/2),(1/2,0,1/2),(1/4,1/4,1/4),(3/4,3/4,1/4),(3/4,1/4,3/4),(1/4,3/4,3/4),将这些坐标代入(8-9)式得:,例如:金刚石结构,提出后4项公因子ei(h+k+l)/2后剩下的因子与前4项相同.因此得到,F1就是面心点阵的结构因子,当(hkl)全为偶数时,由于F1=4,F2=2所以Fhkl=8f或|Fhkl|2=64f2,所以Fhkl=0,当(hkl)奇偶混杂时,F1=0,所以,对于金刚石结构而言:当(hkl)奇偶混杂时Fhkl=0,h+k+l=4n+2时,h+k+l=4n时,则h+k+l也为奇数,(h+k)(k+l)(h+l)必全为偶数,令h+k+l=2n+1,则,F1=4,所以,当(hkl)全为奇数时,由此看出,金刚石虽然是立方面心点阵,但是其消光规律却与前所讨论的不同,为什么呢?我们前面所讲的面心点阵、体心点阵等的消光规律指的是每个点阵点只代表一个等同原子所散射X射线的消光规律.若每个点阵点(结构基元)代表的内容不只一个原子,如上述金刚石或NaCl等,由于结构基元内各个原子所散射的X射线还要相互干涉,因而金刚石结构除了要服从简单的面心点阵结构的消光规律外,还要进一步消光,这在结构因子上表现为多了F2=1+ei(h+k+l)/2这一因子.,因此,对各种点阵型式的消光规律应理解为:凡是消光规律排除的衍射绝不会出现,但消光规律未排除的衍射也不一定出现,以面心点阵为例,一定不出现(hkl)三数奇偶混杂的衍射,而只可能出现(hkl)全奇或全偶的衍射,但只是可能而不一定会出现,有时即使出现,其强度也可能很弱,例如,金刚石中,消失了(222)衍射;NaCl中,(hkl)全奇时衍射很弱.,(a)体心立方a-Fea=b=c=0.2866nm,(b)体心立方Wa=b=c=0.3165nm,(d)体心正交:a=0.286nm,b=0.300nm,c=0.320nm,(e)面心立方:g-Fea=b=c=0.360nm,图3-X射线衍射花样与晶胞形状及大小之间的关系,(c)体心四方a=b=0.286nm,c=0.320nm,2-5SEM和STM测定固体结构,SEM:扫描电子显微镜,特点:分辨率高,景深长,图像立体感强,放大倍率可方便调节,可对表面进行综合分析,原理:能量为10keV、束斑5-20nm的电子束照到样品表面,使电子束在样品表面扫描,使表面发射二次电子,携带表面形貌信息,收集二次电子获得样品表面的放大像,扫描电镜的结构和工作原理,HighResolutionFieldEmissionSEM,不能对原子直接观察和操纵!,人眼的分辨率为10-4米光学显微镜分辨率为10-7米扫描透射电子显微镜分辨率为10-10米场离子

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论