2020年高考数学试题解析分项版 专题14 复数、推理与证明 理_第1页
2020年高考数学试题解析分项版 专题14 复数、推理与证明 理_第2页
2020年高考数学试题解析分项版 专题14 复数、推理与证明 理_第3页
2020年高考数学试题解析分项版 专题14 复数、推理与证明 理_第4页
2020年高考数学试题解析分项版 专题14 复数、推理与证明 理_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2020年高考试题解析数学(理科)分项版14 复数、推理与证明一、选择题:1. (2020年高考山东卷理科2)复数z=(为虚数单位)在复平面内对应的点所在象限为(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限4.(2020年高考浙江卷理科2)把复数的共轭复数记作,若,为虚数单位,则=(A) (B) (C)(D)【答案】 A【解析】 故选A5(2020年高考广东卷理科1)设复数z满足(1+i)z=2,其中i为虚数单位,则Z=( ) A1+i B1-i C2+2i D2-2i【解析】B.由题得所以选B. 6.(2020年高考辽宁卷理科1)a为正实数,i为虚数单位,则a=( )(A)2 (B) (C) (D)1答案: B解析:,a0,故a=.7. (2020年高考全国新课标卷理科1)复数的共轭复数是( )A B C D;解析:C,因为=,所以,共轭复数为,选C点评:本题考查复数的概念和运算,先化简后写出共轭复数即可。8.(2020年高考江西卷理科1)若,则复数A. B. C. D. 【答案】D【解析】因为=,所以复数,选D.9. (2020年高考江西卷理科7)观察下列各式:=3125,=15625,=78125,则的末四位数字为 A3125 B5625 C0625 D8125【答案】D【解析】观察发现幂指数是奇数的,结果后三位数字为125,故排除B、C选项;而,故A也不正确, 所以选D.10(2020年高考江西卷理科10)如右图,一个直径为l的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是12(2020年高考湖北卷理科1)i为虚数单位,则=A.iB.1C.iD.1答案:A解析:因为,故所以选A.13(2020年高考陕西卷理科7)设集合,则为(A) (B) (C) (D)【答案】C【解析】:由即由得即故选C14.(2020年高考重庆卷理科1)复数(A) (B) (C) (D) 解析:选B. 。二、填空题:1. (2020年高考山东卷理科15)设函数,观察:根据以上事实,由归纳推理可得:当且时, .【答案】【解析】观察知:四个等式等号右边的分母为,即,所以归纳出分母为的分母为,故当且时,.2.(2020年高考安徽卷理科15)在平面直角坐标系中,如果与都是整数,就称点为整点,下列命题中正确的是_(写出所有正确命题的编号).存在这样的直线,既不与坐标轴平行又不经过任何整点如果与都是无理数,则直线不经过任何整点直线经过无穷多个整点,当且仅当经过两个不同的整点直线经过无穷多个整点的充分必要条件是:与都是有理数存在恰经过一个整点的直线【答案】【命题意图】本题考查直线方程,考查逻辑推理能力.难度较大.【解析】正确,令满足;错误,若,过整点(1,0);正确,设是过原点的直线,若此直线过两个整点,则有,两式相减得,则点也在直线上,通过这种方法可以得到直线经过无穷多个整点,通过上下平移得对于也成立;错误,当与都是有理数时,令显然不过任何整点;正确. 如:直线恰过一个整点【解题指导】:这类不定项多选题类型,难度非常大,必须每一个选项都有足够的把握确定其正误,解题时须耐心细致。3. (2020年高考湖北卷理科15)给n个自上而下相连的正方形着黑色或白色.当n4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如下图所示:n=1n=2n=3n=4由此推断,当n=6时,黑色正方形互不相邻的着色方案共有 种,至少有两个黑色正方形相邻的着色方案共有 种.(结果用数值表示) 答案:21,43解析:根据着色方案可知,n=6时,若有3个黑色正方形则有3种,有2个黑色正方形有4+3+2+1+1=11种,有1个黑色正方形有6种;有0个黑色正方形有1种,所以共有3+11+6+1=21种.n=6时,当至少有2个黑色正方形相邻时,画出图形可分为:有2个黑色正方形相邻时,共23种,有3个黑色正方形相邻时,共12种,有4个黑色正方形相邻时,共5种,有5个黑色正方形相邻时,共2种,有6个黑色正方形相邻时,共1种.故共有23+12+5+2+1=43种.4(2020年高考陕西卷理科13)观察下列等式照此规律,第个等式为 【答案】【解析】:第个等式是首项为,公差1,项数为的等差数列,即3、(2020年高考安徽卷江苏3)设复数i满足(i是虚数单位),则的实部是_【答案】1【解析】因为,所以,故的实部是1.三、解答题:1(2020年高考上海卷理科19)(12分)已知复数满足(为虚数单位),复数的虚部为,是实数,求。解: (4分)设,则,(12分) , (12分)(19)(2011年高考安徽卷理科19)(本小题满分12分)()设证明,(),证明.【命题意图】:本题考查不等式的基本性质,对数函数的性质和对数换底公式等基本知识,考查代数式恒定变形能力和推理论证能力。【证明】:()由于,所以要证明:只要证明:只要证明:只要证明:只要证明:由于,上式显然成立,所以原命题成立。2. (2020年高考天津卷理科20)(本小题满分14分)已知数列与满足:, ,且()求的值;()设,证明:是等比数列;()设证明:【解析】本小题主要考查等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析能力和解决问题的能力及分类讨论的思想方法.()解:由,可得, 又当n=1时,由,得;当n=2时,可得.当n=3时,可得.()证明:对任意,-得 ,将代入,可得即(),又,故,因此,所以是等比数列.(III)证明:由(II)可得,于是,对任意,有将以上各式相加,得即,此式当k=1时也成立.由式得从而所以,对任意,对于n=1,不等式显然成立.所以,对任意3. (2020年高考湖南卷理科16)对于,将表示为,当时,当时,为或.记为上述表示中为的个数(例如:,故,),则(1) ;(2) .答案:2; 10934. (2020年高考湖南卷理科22)(本小题满分13分)已知函数求函数的零点个数,并说明理由;设数列满足证明:存在常数使得对于任意的都有解:由知,而且,则为的一个零点,且在内由零点,因此至少有两个零点.解法1 记则当时,因此在上单调递增,则在上至多有一个零点,又因为,则在内有零点.所以在上有且只有一个零点,记此零点为,则当时,当时,所以,当时,单调递减,而则在内无零点;当时,单调递增,则在内至多只有一个零点,从而在上至多有一个零点.综上所述,有且只有两个零点.解法2 由,记则当时,因此在上单调递增,则在上至多有一个零点,从而在上至多有一个零点.综上所述,有且只有两个零点.记的正零点为,即(1)当时,由得,而,因此.由此猜测:.下面用数学归纳法证明.当时,显然成立,假设当时,成立,则当时,由知因此,当时,成立故对任意的成立5. (2020年高考广东卷理科20)设数列满足,(1) 求数列的通项公式;(2) 证明:对于一切正整数n,【解析】(1)由令,当当时,当 (2)当时,(欲证),当综上所述6(2020年高考广东卷理科21)(本小题满分14分)【解析】解:(1)证明:切线的方程为当当 (2)的方程分别为求得的坐标,由于,故有1)先证:()设当当()设当注意到2)次证: ()已知利用(1)有 ()设,断言必有若不然,令Y是上线段上异于两端点的点的集合,由已证的等价式1)再由(1)得,矛盾。故必有再由等价式1),综上, (3)求得的交点而是的切点为的切线,且与轴交于,由()线段Q1Q2,有当在(0,2)上,令由于在0,2上取得最大值故,故7. (2020年高考湖北卷理科21)(本小题满分14分)()已知函数,求函数的最大值;()设均为正数,证明:(1)若,则;(2)若,则本题主要考查函数、导数、不等式的证明等基础知识,同时考查综合运用数学知识进行推理论证的能力,以及化归与转化的思想. 解析:()的定义域为,令,解得,当时,在(0,1)内是增函数;当时,在内是减函数;故函数在处取得最大值()(1)由()知,当时,有,即,从而有,得,求和得,即.(2)先证.令,则,于是由(1)得,即.再证.记,令,则,于是由(1)得.即,综合,(2)得证.8.(2020年高考全国卷理科20)设数列满足且()求的通项公式;()设【解析】:()由得,前项为,【解析】:() 故()法一:第次抽取时概率为,则抽得的20个号码互不相同的概率由(),当即有故于是即。故法二:所以是上凸函数,于是因此故综上:10(2020年高考江苏卷23)(本小题满分10分) 设整数,是平面直角坐标系中的点,其中 (1)记为满足的点的个数,求;(2)记为满足是整数的点的个数,求解析:考察计数原理、等差数列求和、分类讨论、归纳推理能力,较难题。(1)因为满足的每一组解构成一个点P,所以。(2)设,则对每一个k对应的解数为:n-3k,构成以3为公差的等差数列;当n-1被3整除时,解数一共有:当n-1被3除余1时,解数一共有:当n-1被3除余2时,解数一共有:11(2020年高考北京卷理科20)(本小题共13分)若数列满足,数列为数列,记=()写出一个满足,且0的数列;()若,n=2000,证明:E数列是递增数列的充要条件是=2020;()对任意给定的整数n(n2),是否存在首项为0的E数列,使得=0?如果存在,写出一个满足条件的E数列;如果不存在,说明理由。解:()0,1,2,1,0是一具满足条件的E数列A5。(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5)()必要性:因为E数列A5是递增数列,所以.所以A5是首项为1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论