2020年高考数学复习:线性规划知识点梳理_第1页
2020年高考数学复习:线性规划知识点梳理_第2页
2020年高考数学复习:线性规划知识点梳理_第3页
2020年高考数学复习:线性规划知识点梳理_第4页
2020年高考数学复习:线性规划知识点梳理_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

线性规划专题一、知识点1. 目标函数: 是一个含有两个变 量 和 的 函数,称为目标函数2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题只含有两个变量的简单线性规划问题可用图解法来解决5. 整数线性规划:要求量取整数的线性规划称为整数线性规划二、疑难知识导析1.对于不含边界的区域,要将边界画成虚线2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域若 直 线 不 过 原点,通 常 选 择 原 点 代入检验3. 平 移 直 线 k 时,直线必须经过可行域4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.三、积储知识(一)1.点P(x0,y0)在直线Ax + By + C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax + By + C=0上方(左上或右上),则当B0时,Ax0+By0+C0;当B0时,Ax0+By0+C0时,Ax0+By0+C0;当B0注意:(1)在直线Ax +By +C=0同一侧的所有点,把它的坐标(x ,y)代入Ax + By +C,所得实数的符号都相同; (2)在直线Ax + By +C=0的两侧的两点,把它的坐标代入Ax + By +C,所得到实数的符号相反,即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax + By +C=0的同侧,则有(Ax1+By1+C)( Ax2+By2+C)02.点P(x1,y1)和点Q(x2,y2)在直线 Ax +By +C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)0(或0表示直线哪一侧的平面区域.特殊地, 当C0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。方法二:利用规律:1.Ax+By+C0,当B0时表示直线Ax +By +C=0上方(左上或右上),当B0时表示直线Ax +By +C=0下方(左下或右下);2.Ax+By+C0时表示直线Ax +By +C=0下方(左下或右下)当B0时表示直线Ax +By +C=0上方(左上或右上)。四、线性规划的有关概念线性约束条件: 线性目标函数:线性规划问题: 可行解、可行域和最优解:【经典例题】(一)建构数学1问题:在约束条件下,如何求目标函数的最大值?首先,做出约束条件所表示的平面区域,这一区域称为可行域,如图(1)所示其次,将目标函数变形为的形式,它表示一条直线,斜率为,且在轴上的截距为平移直线,当它经过两直线与的交点时,直线在轴上的截距最大,如图(2)所示因此,当时,目标函数取得最大值,即当甲、乙两种产品分别生产和时,可获得最大利润万元这类求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为线性规划问题其中使目标函数取得最大值,它叫做这个问题的最优解对于只含有两个变量的简单线性规划问题可用图解法来解决说明:平移直线时,要始终保持直线经过可行域(即直线与可行域有公共点)(二)数学运用例1设,式中变量满足条件,求的最大值和最小值解:由题意,变量所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域由图知,原点不在公共区域内,当时,即点在直线:上,作一组平行于的直线:,可知:当在的右上方时,直线上的点满足,即,而且,直线往右平移时,随之增大由图象可知,当直线经过点时,对应的最大,当直线经过点时,对应的最小,所以,例2设,式中满足条件,求的最大值和最小值解:由引例可知:直线与所在直线平行,则由引例的解题过程知,当与所在直线重合时最大,此时满足条件的最优解有无数多个,当经过点时,对应最小,例3已知满足不等式组,求使取最大值的整数解:不等式组的解集为三直线:,:,:所围成的三角形内部(不含边界),设与,与,与交点分别为,则坐标分别为,作一组平行线:平行于:,当往右上方移动时,随之增大,当过点时最大为,但不是整数解,又由知可取,当时,代入原不等式组得, ;当时,得或, 或;当时, ,故的最大整数解为或例4投资生产A产品时,每生产100吨需要资金200万元,需场地200平方米,可获利润300万元;投资生产B产品时,每生产100米需要资金300万元,需场地100平方米,可获利润200万元现某单位可使用资金1400万元,场地900平方米,问:应作怎样的组合投资,可使获利最大?分析:这是一个二元线性规划问题,可先将题中数据整理成下表,以方便理解题意:资 金(百万元)场 地(平方米)利 润(百万元)A产品223B产品312限 制149然后根据此表数据,设出未知数,列出约束条件和目标函数,最后用图解法求解解:设生产A产品百吨,生产B产品米,利润为百万元,则约束条件为,目标函数为作出可行域(如图),将目标函数变形为,它表示斜率为,在轴上截距为的直线,平移直线,当它经过直线与和的交点时,最大,也即最大此时,因此,生产A产品百吨,生产B产品米,利润最大为1475万元说明:(1)解线性规划应用题的一般步骤:设出未知数;列出约束条件(要注意考虑数据、变量、不等式的实际含义及计量单位的统一);建立目标函数;求最优解(2)对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点(三)画区域1. 用不等式表示以,为顶点的三角形内部的平面区域分析:首先要将三点中的任意两点所确定的直线方程写出,然后结合图形考虑三角形内部区域应怎样表示。解:直线的斜率为:,其方程为可求得直线的方程为直线的方程为的内部在不等式所表示平面区域内,同时在不等式所表示的平面区域内,同时又在不等式所表示的平面区域内(如图)所以已知三角形内部的平面区域可由不等式组表示说明:用不等式组可以用来平面内的一定区域,注意三角形区域内部不包括边界线2 .画出表示的区域,并求所有的正整数解解:原不等式等价于而求正整数解则意味着,还有限制条件,即求依照二元一次不等式表示的平面区域,知表示的区域如下图:对于的正整数解,容易求得,在其区域内的整数解为、3.设,;,用图表示出点的范围分析:题目中的,与,是线性关系可借助于,的范围确定的范围解:由得由,得画出不等式组所示平面区域如图所示说明:题目的条件隐蔽,应考虑到已有的,的取值范围借助于三元一次方程组分别求出,从而求出,所满足的不等式组找出的范围4.已知x,y,a,b满足条件:,2x+y+a=6,x+2y+b=6(1)试画出()的存在的范围; (2)求的最大值。(四)画区域,求面积例1. 求不等式组所表示的平面区域的面积分析:关键是能够将不等式组所表示的平面区域作出来,判断其形状进而求出其面积而要将平面区域作出来的关键又是能够对不等式组中的两个不等式进行化简和变形,如何变形?需对绝对值加以讨论解:不等式可化为或;不等式可化为或在平面直角坐标系内作出四条射线:, ,则不等式组所表示的平面区域如图,由于与、与互相垂直,所以平面区域是一个矩形0ABC(图1)根据两条平行线之间的距离公式可得矩形的两条边的长度分别为和所以其面积为(五)求最值(1)与直线的截距有关的最值问题 例1.如图1所示,已知如图中的三顶点,点在内部及边界运动,请你探究并讨论以下问题:在 点A 处有最大值 6 ,在边界BC处有最小值 1 ;在 点C 处有最大值 1 ,在 点B 处有最小值0ABC( 图2 )0ABC例2若、满足条件求的最大值和最小值分析:画出可行域,平移直线找最优解解:作出约束条件所表示的平面区域,即可行域,如图所示作直线,即,它表示斜率为,纵截距为的平行直线系,当它在可行域内滑动时,由图可知,直线过点A时,取得最大值,当过点时,取得最小值 注:可化为表示与直线平行的一组平行线,其中为截距,特别注意:斜率范围及截距符号。即注意平移直线的倾斜度和平移方向。变式:设x,y满足约束条件分别求:(1)z=6x+10y,(2)z=2x-y,(3)z=2x-y,的最大值,最小值。(2)与直线的斜率有关的最值问题 表示定点P(x0,y0)与可行域内的动点M(x,y)连线的斜率.例1.设实数满足,则的最大值是_ 0ABC(图1)解析:画出不等式组所确定的三角形区域ABC,表示两点确定的直线的斜率,要求z的最大值,即求可行域内的点与原点连线的斜率的最大值可以看出直线OP的斜率最大,故P为与的交点,即A点故答案为例2.如图1所示,已知中的三顶点,点在内部及边界运动,请你探究并讨论以下问题:若目标函数是或,你知道其几何意义吗?你能否借助其几何意义求得和?(3)与距离有关的最值问题(配方)的结构表示定点Q (x0,y0)到可行域内的动点N(x,y)的距离的平方或距离。例1.已知,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论