




已阅读5页,还剩41页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,1,多回路运输车辆路径问题模型及求解,.,2,物流配送车辆优化调度,是物流糸统优化中关键的一环。对配送车辆进行优化调度,可以提高物流经济效益、实现物流科学化。对物流配送车辆优化调度理论与方法进行系统研究是物流集约化发展、构建综合物流系统、建立现代调度指挥系统、发展智能交通运输系统和开展电子商务的基础。,车辆路径问题专题,.,3,主要内容,一、车辆路径问题概述二、车辆路径问题数学模型,车辆路径问题专题,.,4,一、车辆路径问题概述,TheVehicleRoutingProblem(VRP)isagenericnamegiventoawholeclassofproblemsinwhichasetofroutesforafleetofvehiclesbasedatoneorseveraldepotsmustbedeterminedforanumberofgeographicallydispersedcitiesorcustomers.TheobjectiveoftheVRPistodeliverasetofcustomerswithknowndemandsonminimum-costvehicleroutesoriginatingandterminatingatadepot.,.,5,组合爆炸,一台汽车每天要给20-30个不同的自动售货机(AVM:automaticvendingmachine)补充饮料,这个时候,巡回路线要访问20台机器的时候,就有20!2432902008176640000条巡回路线可供选择,若是访问30台,就有30!265252859812191058636308480000000条巡回路线可供选择,利用计算机,若是一秒钟可以计算100亿条路线的距离的话,20台AVM的计算需要花费7年的时间,30台AVM则需要花费8411兆年的时间,这种现象称为“组合爆炸”。,.,6,Features,Depots(number,location)Vehicles(capacity,costs,timetoleave,driverrestperiod,typeandnumberofvehicles,maxtime)Customers(demands,hardorsofttimewindows,pickupanddelivery,accessibilityrestriction,splitdemand,priority)RouteInformation(maximumroutetimeordistance,costonthelinks),.,7,ObjectiveFunctions(alsomultipleobjectives)MinimisethetotaltraveldistanceMinimisethetotaltraveltimeMinimisethenumberofvehicles,.,8,Figure1TypicalinputforaVehicleRoutingProblem,.,9,Figure2Anoutputfortheinstanceabove,.,10,Figure3Anoutputfortheinstanceabove,Vehicle1,Vehicle2,Vehicle3,.,11,车辆路径问题的分类,一、车辆路径问题概述,.,12,CapacitatedVRP(CPRV)MultipleDepotVRP(MDVRP)PeriodicVRP(PVRP)SplitDeliveryVRP(SDVRP)StochasticVRP(SVRP)VRPwithBackhaulsVRPwithPick-UpandDeliveringVRPwithSatelliteFacilitiesVRPwithTimeWindows(VRPTW),.,13,CapacitatedVRP(CPRV),CVRPisaVRPinwhichafixedfleetofdeliveryvehiclesofuniformcapacitymustserviceknowncustomerdemandsforasinglecommodityfromacommondepotatminimumtransitcost.Thatis,CVRPislikeVRPwiththeadditionalconstraintthateveryvehiclesmusthaveuniformcapacityofasinglecommodity.WecanfindbelowaformaldescriptionfortheCVRP:Objective:Theobjectiveistominimizethevehiclefleetandthesumoftraveltime,andthetotaldemandofcommoditiesforeachroutemaynotexceedthecapacityofthevehiclewhichservesthatroute.Feasibility:Asolutionisfeasibleifthetotalquantityassignedtoeachroutedoesnotexceedthecapacityofthevehiclewhichservicestheroute.,.,14,MultipleDepotVRP(MDVRP),Acompanymayhaveseveraldepotsfromwhichitcanserveitscustomers.Ifthecustomersareclusteredarounddepots,thenthedistributionproblemshouldbemodeledasasetofindependentVRPs.However,ifthecustomersandthedepotsareintermingledthenaMulti-DepotVehicleRoutingProblemshouldbesolved.AMDVRPrequirestheassignmentofcustomerstodepots.Afleetofvehiclesisbasedateachdepot.Eachvehicleoriginatefromonedepot,servicethecustomersassignedtothatdepot,andreturntothesamedepot.Theobjectiveoftheproblemistoserviceallcustomerswhileminimizingthenumberofvehiclesandtraveldistance.WecanfindbelowaformaldescriptionfortheMDVRP:Objective:Theobjectiveistominimizethevehiclefleetandthesumoftraveltime,andthetotaldemandofcommoditiesmustbeservedfromseveraldepots.Feasibility:AsolutionisfeasibleifeachroutesatisfiesthestandardVRPconstraintsandbeginsandendsatthesamedepot.,.,15,PeriodicVRP(PVRP),InclassicalVRPs,typicallytheplanningperiodisasingleday.InthecaseofthePeriodVehicleRoutingProblem(PVRP),theclassicalVRPisgeneralizedbyextendingtheplanningperiodtoMdays.Wedefinetheproblemasfollows:Objective:Theobjectiveistominimizethevehiclefleetandthesumoftraveltimeneededtosupplyallcustomers.Feasibility:AsolutionisfeasibleifallconstraintsofVRParesatisfied.Furthermoreavehiclemaynotreturntothedepotinthesamedayitdeparts.OvertheM-dayperiod,eachcustomermustbevisitedatleastonce.,.,16,SplitDeliveryVRP(SDVRP),SDVRPisarelaxationoftheVRPwhereinitisallowedthatthesamecustomercanbeservedbydifferentvehiclesifitreducesoverallcosts.Thisrelaxationisveryimportantifthesizesofthecustomerordersareasbigasthecapacityofavehicle.ItisconcludedthatitismoredifficulttoobtaintheoptimalsolutionintheSDVRPthatintheVRP.Objective:Theobjectiveistominimizethevehiclefleetandthesumoftraveltimeneededtosupplyallcustomers.Feasibility:AsolutionisfeasibleifallconstraintsofVRParesatisfiedexceptthatacustomermaybesuppliedbymorethanonevehicle.Formulation:Minimizethesumofthecostofallroutes.AneasywaytotransformaVRPintoaSDVRPconsistsonallowingsplitdeliveriesbysplittingeachcustomerorderintoanumberofsmallerindivisibleorders.,.,17,StochasticVRP(SVRP),StochasticVRP(SVRP)areVRPswhereoneorseveralcomponentsoftheproblemarerandom.ThreedifferentkindsofSVRParethenextexamples:Stochasticcustomers:Eachcustomerviispresentwithprobabilitypiandabsentwithprobability1-pi.Stochasticdemands:Thedemanddiofeachcustomerisarandomvariable.Stochastictimes:Servicetimessiandtraveltimestijarerandomvariables.InSVRP,twostagesaremadeforgettingasolution.Afirstsolutionisdeterminedbeforeknowingtherealizationsoftherandomvariables.Inasecondstage,arecourseorcorrectiveactioncanbetakenwhenthevaluesoftherandomvariablesareknown.,.,18,Objective:Theobjectiveistominimizethevehiclefleetandthesumoftraveltimeneededtosupplyallcustomerswithrandomvaluesoneachexecutionforthecustomerstobeserved,theirdemandsand/ortheserviceandtraveltimes.Feasibility:Whensomedataarerandom,itisnolongerpossibletorequirethatallconstraintsbesatisfiedforallrealizationsoftherandomvariables.Sothedecisionmakermayeitherrequirethesatisfactionofsomeconstraintswithagivenprobability,ortheincorporationintothemodelofcorrectiveactionstobetakenwhenaconstraintisviolated.,.,19,VRPwithPickupandDeliveries,TheVehicleRoutingProblemwithPickupandDeliveries(VRPPD)isaVRPinwhichthepossibilitythatcustomersreturnsomecommoditiesiscontemplated.SoinVRPPDitsneededtotakeintoaccountthatthegoodsthatcustomersreturntothedelivervehiclemustfitintoit.Thisrestrictionmaketheplanningproblemmoredifficultandcanleadtobadutilizationofthevehiclescapacities,increasedtraveldistancesoraneedformorevehicles.Hence,itisusuallytoconsiderrestrictedsituationswherealldeliverydemandsstartfromthedepotandallpick-updemandsshallbebroughtbacktothedepot,sotherearenointerchangesofgoodsbetweenthecustomers.Anotheralternativeisrelaxingtherestrictionthatallcustomershavetobevisitedexactlyonce.Anotherusualsimplificationistoconsiderthateveryvehiclemustdeliverallthecommoditiesbeforepickingupanygoods(VRPB).,.,20,Objective:Theobjectiveistominimizethevehiclefleetandthesumoftraveltime,withtherestrictionthatthevehiclemusthaveenoughcapacityfortransportingthecommoditiestobedeliveredandthoseonespicked-upatcustomersforreturningthemtothedepot.Feasibility:Asolutionisfeasibleifthethetotalquantityassignedtoeachroutedoesnotexceedthecapacityofthevehiclewhichservicestherouteandthevehiclehasenoughcapacityforpicking-upthecommoditiesatcustomers.,.,21,VRPwithBackhauls,TheVehicleRoutingProblemwithBackhauls(VRPB)isaVRPinwhichcustomerscandemandorreturnsomecommodities.SoinVRPPDitsneededtotakeintoaccountthatthegoodsthatcustomersreturntothedelivervehiclemustfitintoit.Thecriticalassumptioninthatalldeliveriesmustbemadeoneachroutebeforeanypickupscanbemade.Thisarisesfromthefactthatthevehiclesarerear-loaded,andrearrangementoftheloadsonthetracksatthedeliverypointsisnotdeemedeconomicalorfeasible.Thequantitiestobedeliveredandpicked-uparefixedandknowninadvance.VRPBissimilartoVRPPDwiththerestrictionthatinthecaseofVRPBalldeliveriesforeachroutemustbecompletedbeforeanypickupsaremade.,.,22,Objective:Theobjectiveistofindsuchasetofroutesthatminimizesthetotaldistancetraveled.Feasibility:Afeasiblesolutionoftheproblemconsistsofasetofrouteswherealldeliveriesforeachroutearecompletedbeforeanypickupsaremadeandthevehiclecapacityisnotviolatedbyeitherthelinehaulorbackhaulpointsassignedtotheroute.,.,23,VRPwithTimeWindows(VRPTW),TheVRPTWisthesameproblemthatVRPwiththeadditionalrestrictionthatinVRPTWatimewindowisassociatedwitheachcustomerv,defininganintervalav,bvwhereinthecustomerhastobesupplied.Theintervalav,bvatthedepotiscalledtheschedulinghorizon.Hereisaformaldescriptionoftheproblem:Objective:Theobjectiveistominimizethevehiclefleetandthesumoftraveltimeandwaitingtimeneededtosupplyallcustomersintheirrequiredhours.Feasibility:TheVRPTWis,regardingtoVRP,characterizedbythefollowingadditionalrestrictions:Asolutionbecomesinfeasibleifacustomerissuppliedaftertheupperboundofitstimewindow.Avehiclearrivingbeforethelowerlimitofthetimewindowcausesadditionalwaitingtimeontheroute.Eachroutemuststartandendwithinthetimewindowassociatedwiththedepot.Inthecaseofsofttimewidows,alaterservicedoesnotaffectthefeasibilityofthesolution,butispenalizedbyaddingavaluetotheobjectivefunction.,.,24,一、车辆路径问题概述,.,25,相关网站,1.西班牙UniversityofMlaga:http:/neo.lcc.uma.es/radiaeb/WebVRP/index.html2.挪威SINTEF:http:/www.top.sintef.no/3.瑞士IDSIA:http:/www.idsia.ch/4.美国UniviversityofLehigh:/5.德国UniversityofHeidelberg:http:/www.iwr.uniheidelberg.de/groups/comopt/software/TSPLIB95/index.html,.,26,旅行商问题(TravellingSalemanProblem),TSP,某货郎由一城市出发,拟去已确定的n个城市推销产品,最后回到出发城市。设任意两城市间的距离都是已知的,要求找出一条每个城市都只到一次的旅行线路,使其总旅程最短。,二、车辆路径问题数学模型,.,27,建模:,TSP又称为货郎担问题。给这些城市编号。出发城市为0,拟访问城市分别为1,2,n问题就转化为:,求一个的排序使得最小。,其中,为城市到的距离。,.,28,TSP的数学规划形式:,表示进入且仅进入城市j一次;,表示离开且仅离开城市i一次;,(保证线路连通性),其中,表示若该旅行商在访问城i后接着访问城j,则令,否则令。,.,29,Problem:WhatsdifferencebetweenTSPandVRP?,.,30,CapacitatedVRP(CVRP)(非满载/有向图),G=(V,A),连通有向图,V=v0,v1vn,A=(vi,vj);v0代表配送中心或者车场,Vc=v1vn,客户点vi的需求为qi(0);cij0代表客户点vi,vj之间的费用;M辆同车型的车辆,车载容量Q(qi),.,31,.,32,.,33,Example:,0,1,2,3,SupposeM=1,.,34,Example:,0,1,2,3,SupposeM=2,.,35,Example:,0,1,2,3,SupposeM=2,4,5,6,第1辆车服务?第2辆车服务?,.,36,VRPwithTimeWindows(VRPTW),TheVRPTWisthesameproblemthatVRPwiththeadditionalrestrictionthatinVRPTWatimewindowisassociatedwitheachcustomervi,defininganintervalai,biwhereinthecustomerhastobesupplied.TheintervalE,Latthedepotiscalledtheschedulinghorizon.,.,37,ModelDescription,VRPTWisdefinedonthen
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 服装设计师与时尚公司长期合作协议
- 智能门锁集成安装与定期检修服务协议
- 滩涂贝类养殖权委托经营管理全面合作协议
- 康养中心护理服务委托专业运营协议
- 跨界脑机接口技术研发与市场推广合作协议
- 留学中介服务及海外院校录取通知书获取及签证申请辅导及生活适应辅导协议
- 耕地流转规模化种植项目委托管理合同
- 班组长现场管理
- 全身人物绘画美术课件
- 瘫痪人员护理要点与规范
- 换热器检修施工综合方案
- 罗氏C8000使用操作说明
- 融资融券策略课件
- 单层钢结构厂房施工组织设计方案
- 项目尽职调查清单模板
- 唯物主义和经验批判主义研读课件
- 环境保护和水土保持保证体系框图
- 眼部健康检测与分析课件
- 专业硕士学位论文修改报告(二)
- 苏州市建设工程造价计价解释
- 煤矿机电设备春季预防性检修计划
评论
0/150
提交评论