




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,1,从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.,2.组合的定义:,从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合.,3.排列数公式:,4.组合数公式:,1.排列的定义:,排列与组合的区别与联系:与顺序有关的为排列问题,与顺序无关的为组合问题.,.,2,1.插空法2.捆绑法3.插拨法(转化法/隔板法)4.剩余法5.对等法6.排除法7.倍缩法8.枚举法等,排列组合常用方法与技巧,.,3,例1学校组织老师学生一起看电影,同一排电影票12张。8个学生,4个老师,要求老师在学生之间,且老师互不相邻,共有多少种不同的坐法?,解先排学生共有种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有种选法.根据乘法原理,共有的不同坐法为种.,结论1插空法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法.即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可.,分析此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.,.,4,例25个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?,解因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有种排法,其中女生内部也有种排法,根据乘法原理,共有种不同的排法.,结论2捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列.,分析此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.,.,5,例3在高二年级中的8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?,解此题可以转化为:将12个相同的白球分成8份,有多少种不同的分法问题,因此须把这12个白球排成一排,在11个空档中放上7个相同的黑球,每个空档最多放一个,即可将白球分成8份,显然有种不同的放法,所以名额分配方案有种.,结论3转化法(插拔法):对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解.,分析此题若直接去考虑的话,就会比较复杂.但如果我们将其转换为等价的其他问题,就会显得比较清楚,方法简单,结果容易理解.,.,6,例4袋中有不同的5分硬币23个,不同的1角硬币10个,如果从袋中取出2元钱,有多少种取法?,解把所有的硬币全部取出来,将得到0.0523+0.1010=2.15元,所以比2元多0.15元,所以剩下0.15元即剩下3个5分或1个5分与1个1角,所以共有种取法.,结论4剩余法:在组合问题中,有多少取法,就有多少种剩法,他们是一一对应的,因此,当求取法困难时,可转化为求剩法.,分析此题是一个组合问题,若是直接考虑取钱的问题的话,情况比较多,也显得比较凌乱,难以理出头绪来.但是如果根据组合数性质考虑剩余问题的话,就会很容易解决问题.,.,7,例5期中安排考试科目9门,语文要在数学之前考,有多少种不同的安排顺序?,解不加任何限制条件,整个排法有种,“语文安排在数学之前考”,与“数学安排在语文之前考”的排法是相等的,所以语文安排在数学之前考的排法共有种.,结论5对等法:在有些题目中,它的限制条件的肯定与否定是对等的,各占全体的二分之一.在求解中只要求出全体,就可以得到所求.,分析对于任何一个排列问题,就其中的两个元素来讲的话,他们的排列顺序只有两种情况,并且在整个排列中,他们出现的机会是均等的,因此要求其中的某一种情况,能够得到全体,那么问题就可以解决了.并且也避免了问题的复杂性.,.,8,例6某班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?,解43人中任抽5人的方法有种,正副班长,团支部书记都不在内的抽法有种,所以正副班长,团支部书记至少有1人在内的抽法有种.,结论6排除法:有些问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中排除.,分析此题若是直接去考虑的话,就要将问题分成好几种情况,这样解题的话,容易造成各种情况遗漏或者重复的情况.而如果从此问题相反的方面去考虑的话,不但容易理解,而且在计算中也是非常的简便.这样就可以简化计算过程.,.,9,定序问题倍缩空位插入策略,例7.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法,解:,(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药品经营企业质量培训测试题及答案
- 解析卷北师大版9年级数学上册期末试题及完整答案详解(必刷)
- 押题宝典高校教师资格证之《高等教育法规》考试题库带答案详解(b卷)
- 基础强化人教版8年级数学下册《平行四边形》章节练习试题(详解)
- 推拿治疗学考试题库附参考答案详解(巩固)
- 2025年新能源项目承包经营权长期转让合同范本
- 2025二手房买卖合同范本:全流程服务保障
- 2025版现代商务空间租赁管理合同书
- 2025版国际劳务派遣与员工权益保护合同
- 2025年度水库渔业承包与生态旅游开发合作协议
- 2025年新高考Ⅰ卷(新课标Ⅰ卷)语文真题试卷(含答案)
- CJ/T 448-2014城镇燃气加臭装置
- 项目经理业绩合同范本
- 租房开午托园合同范本
- 水电维修外包合同范本
- T/CECS 10344-2023绿色装配式边坡防护面层
- 护理分层培训体系构建与应用
- 员工自付社保协议书
- 混改公司合同协议模板
- 儿童多种维生素课件
- GA/T 2159-2024法庭科学资金数据清洗规程
评论
0/150
提交评论