2020高考数学立体几何练习题.doc_第1页
2020高考数学立体几何练习题.doc_第2页
2020高考数学立体几何练习题.doc_第3页
2020高考数学立体几何练习题.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

08高考数学立体几何练习题1已知四棱锥的底面为直角梯形,底面,且,是的中点()证明:面面;()求与所成的角;()求面与面所成二面角的大小2如图,在四棱锥中,底面为矩形,侧棱底面, 为的中点. ()求直线与所成角的余弦值;()在侧面内找一点,使面,并求出点到和的距离3如图所示的多面体是由底面为的长方体被截面所截面而得到的,其中 ()求的长; ()求点到平面的距离4如图,在长方体,中,点在棱上移动. ()证明:; ()当为的中点时,求点到面的距离; ()等于何值时,二面角的大小为.5(xx福建理18题)如图,正三棱柱ABCA1B1C1的所有棱长都为2,D为CC1中点()求证:AB1面A1BD;()求二面角AA1DB的大小;()求点C到平面A1BD的距离6(xx宁夏理19题)如图,在三棱锥中,侧面与侧面均为等边三角形,为中点()证明:平面;()求二面角的余弦值7(xx陕西理19题)如图,在底面为直角梯形的四棱锥中,,BC=6()求证:;()求二面角的大小立体几何练习题参考答案1以为坐标原点长为单位长度,如图建立空间直角坐标系,则各点坐标为.()证明:因由题设知,且与是平面内的两条相交直线,由此得面.又在面上,故面面.()解:因()解:在上取一点,则存在使要使为所求二面角的平面角.2解:()建立如图所示的空间直角坐标系,则的坐标为、,从而设的夹角为,则与所成角的余弦值为. ()由于点在侧面内,故可设点坐标为,则,由面可得, 即点的坐标为,从而点到和的距离分别为.3 解:(I)建立如图所示的空间直角坐标系,则,设.为平行四边形,(II)设为平面的法向量,的夹角为,则到平面的距离为4解:以为坐标原点,直线分别为轴,建立空间直角坐标系,设,则(1)(2)因为为的中点,则,从而,设平面的法向量为,则也即,得,从而,所以点到平面的距离为(3)设平面的法向量,由 令, 依题意(不合,舍去), .时,二面角的大小为.5解:()取中点,连结为正三角形,在正三棱柱中,平面平面,平面取中点,以为原点,的方向为轴的正方向建立空间直角坐标系,则,xzABCDOFy,平面()设平面的法向量为,令得为平面的一个法向量由()知平面,为平面的法向量,二面角的大小为()由(),为平面法向量,点到平面的距离6解:以为坐标原点,射线分别为轴、轴的正半轴,建立如图的空间直角坐标系设,则的中点,故等于二面角的平面角,所以二面角的余弦值为7解:()如图,建立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论