




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【教育类精品资料】,9.1-9.2微分方程初步,积分问题,微分方程问题,推广,含未知函数及其导数的方程叫做微分方程.,方程中所含未知函数导数的最高阶数叫做微分方程的阶.,一、微分方程的基本概念,若未知函数都是一元函数,该微分方程称为常微分方程,切线斜率为2x,求该曲线的方程.,引例,一曲线通过点(1,2),在该曲线上任意点处的,解:设所求曲线方程为y=y(x),则有如下关系式:,(C为任意常数),由得C=1,因此所求曲线方程为,由得,使方程成为恒等式的函数,微分方程的解,通解,(解中包含一个任意常数C),特解,不含任意常数的解,分离变量微分方程,二、可分离变量的微分方程,分离变量方程的解法:,两边积分,得,则有,-方程的隐式通解,例1求微分方程,的通解.,解:分离变量得,两边积分,得,(C为任意常数),(此式含分离变量时丢失的解y=0),说明:在求解过程中每一步不一定是同解变形,因此可能增、,减解.,例2解初值问题,解:分离变量得,两边积分得,由初始条件得C=0,(C为任意常数),故所求特解为,练习,解:分离变量,(C0),两边积分得,三、齐次微分方程,三、一阶线性微分方程,一阶线性微分方程标准形式:,若Q(x)0,称为非齐次方程.,1.解齐次方程,分离变量,两边积分得,故通解为,称为齐次方程;,对应齐次方程通解,齐次方程通解,非齐次方程特解,2.解非齐次方程,用常数变易法:,则,故原方程的通解,即,即,作变换,两端积分得,例1解方程,解:先解,即,积分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养殖孵化建房申请书
- 网课自愿申请书
- 建造师转出申请书
- 大学层长申请书
- 潼关安全生产培训课件
- 钟楼街申请书
- 农村自用猪舍申请书
- 暨阳安全生产培训课件
- 申请老赖死亡申请书
- 团体人身保险理赔申请书
- 2025山东东营公安招录辅警392人考试参考试题及答案解析
- 2025四川宜宾市退役军人事务局招聘临聘人员2人考试参考题库及答案解析
- 高考语文 热点04 现代文阅读II之理论与文本互证类题(解析版)
- 第十三章 三角形 单元测试卷(含答案) 2025-2026学年人教版八年级数学上册
- 预制混凝土检查井采购合同模板
- 2025年中小学《国庆节、中秋节》放假通知及安全提示
- 2025年司法局招聘司法所协理员历年考试试题与答案
- 右江盆地低温金、锑矿床热液石英:显微结构与地球化学特征的成矿密码
- 小学学校“十五五”(2026-2030)发展规划
- (完整版)室外散水专项方案
- 智能物流行业智能化运输装备应用前景研究报告
评论
0/150
提交评论