控制工程3(英文)_第1页
控制工程3(英文)_第2页
控制工程3(英文)_第3页
控制工程3(英文)_第4页
控制工程3(英文)_第5页
已阅读5页,还剩106页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.,Ch6TheStabilityofLinearFeedbackSystems,TheconceptofstabilityTheRouth-HurwitzstabilitycriterionTherelativestability,.,6.1Theconceptofstability,Astablesystemisadynamicsystemwithaboundedoutputtoaboundedinput(BIBO).,Theissueofensuringthestabilityofaclosed-loopfeedbacksystemiscentraltocontrolsystemdesign.Anunstableclosed-loopsystemisgenerallyofnopracticalvalue.,absolutestability,relativestability,.,Absolutestability:Wecansaythataclosed-loopfeedbacksystemiseitherstableoritisnotstable.Thistypeofstable/notstablecharacterizationisreferredtoasabsolutestability.,Relativestability:Giventhataclosed-loopsystemisstable,wecanfurthercharacterizethedegreeofstability.Thisisreferredtoasrelativestability.,.,.,.,6.2TheRouth-Hurwitzstabilitycriterion,.,where,.,Anecessaryandsufficientconditionforafeedbacksystemtobestableisthatallthepolesofthesystemtransferfunctionhavenegativerealparts.,.,Anecessarycondition:Allthecoefficientsofthepolynomialmusthavethesamesignandbenonzeroifalltherootsareinleft-handplane(LHP).,Thecharacteristicequationiswrittenas,.,HurwitzandRouthpublishedindependentlyamethodofinvestigatingthestabilityofalinearsystem.Thenumberofrootsofq(s)withpositiverealpartsisequaltothenumberofchangesinsignofthefirstcolumnoftheRoutharray.,Routh-Hurwitzstabilitycriterion,.,CASE1Noelementinthefirstcolumniszero.,CASE2Zerointhefirstcolumnwhilesomeotherelementsofrowcontainingazerointhefirstcolumnarenonzero.,CASE3Zerosinthefirstcolumn,andotherelementsoftherowcontainingthezeroarealsozero.,.,Considerthecharacteristicpolynomial,TheRoutharrayis,.,Case3,Considerthecharacteristicpolynomial,TheRoutharrayis,Theauxiliarypolynomial,.,.,Designexample:weldingcontrol,.,6.3Therelativestability,Therelativestabilityofasystemcanbedefinedasthepropertythatismeasuredbytherelativerealpartofeachrootorpairofroots.Axisshiftandexamples,.,.,Considercontrolsystem,DeterminetherangeofKsatisfyingthestabilityandallpolesM.Step4Therootlocusontherealaxisalwaysliesinasectionoftherealaxistotheleftofanoddnumberofpolesandzeros.Step5Determinethenumberofseparateloci,SL,thenumberofseparatelociisequaltothenumberofpoles.,.,Example7.1Second-ordersystem,.,Step6Therootlocimustbesymmetricalwithrespecttothehorizontalrealaxiswithangles.Step7Therootlociproceedtothezerosatinfinityalongasymptotescenteredatandwithangles.TheselinearasymptotesarecenteredatapointontherealaxisgivenbyTheangleoftheasymptoteswithrespecttotherealaxisis,.,Example7.2Fourth-ordersystem,.,.,Step8Determinethepointatwhichthelocuscrossestheimaginaryaxis(ifitdoesso),usingtheRouth-Hurwitzcriterion.TheactualpointatwhichtherootlocuscrossestheimaginaryaxisisreadilyevaluatedbyutilizingtheRouth-HurwitzCriterion.Step9Determinethebreakawaypointontherealaxis(ifany).LetorStep10TheangleoflocusdeparturefromapoleisTheangleoflocusarrivalfromazerois,.,.,.,.,.,Step11Determinetherootlocationsthatsatisfythephasecriterionatroot.Thephasecriterionisq=1,2.Step12Determinetheparametervalueataspecificrootusingthemagnituderequirement.Themagnituderequirementatis,.,Example7.4Fourth-ordersystem,.,.,7.3ParameterDesignbytheRootLocusmethod,Thismethodofparameterdesignusestherootlocusapproachtoselectthevaluesoftheparameters,Theeffectofthecoefficienta1maybeascertainedfromtherootlocusequation,.,.,.,.,.,.,7.4SensitivityandtheRootLocus,TherootsensitivityofasystemT(s)canbedefinedas,thesensitivityofasystemperformancetospecificparameterchanges,wehave,.,.,.,.,.,7.5Three-term(PID)Controllers,Thecontrollerprovidesaproportionalterm,anintegrationterm,andaderivativeterm,.,.,.,.,.,.,Summary,Inthischapter,wehaveinvestigatedthemovementofthecharacteristicrootsonthes-planeasthesystemparametersarevariedbyutilizingtherootlocusmethod.Therootlocusmethod,agraphicaltechnique,canbeusedtoobtainanapproximatesketchinordertoanalyzetheinitialdesignofasystemanddeterminesuitablealterationsofthesystemstructureandtheparametervalues.Furthermore,weextendedtherootlocusmethodforthedesignofseveralparametersforaclosed-loopcontrolsystem.Thenthesensitivityofthecharacteristicrootswasinvestigatedforundesiredparametervariationsbydefiningarootsensitivitymeasure.,.,Assignment,E7.4E7.8,.,Ch8FrequencyResponseMethods,BasicconceptoffrequencyresponseFrequencyresponseplotsDrawingtheBodediagramPerformancespecificationinthefrequencydomain,.,8.1Basicconceptoffrequencyresponse,Thefrequencyresponseofasystemisdefinedasthesteady-stateresponseofthesystemtoasinusoidalinputsignal.Theresultingoutputsignalforalinearsystem,isalsoasinusoidalinthesteadystate;itdiffersfromtheinputwaveformonlyinamplitudeandphaseangle.,.,Letinput,TheLaplacetransformation,Theoutput,undeterminedcoefficient,.,.,iscomplexvector,.,FrequencyCharacteristics,TransferfunctionandLaplacetransformFrequencycharacteristicsandFouriertransform,.,Frequencycharacteristic,Transferfunctionanddifferentialequationareequivalentinrepresentationofsystem.,.,FrequencycharacteristicandTransferfunction,.,Computationoffrequencyresponse,.,8.2Frequencyresponseplots,PolarplotBodediagramNicholschartFrequencyresponseplotsoftypicalelements,.,.,frequencyresponseofanRCfilter,.,.,.,Theprimaryadvantageofthelogarithmicplotistheconversionofmultiplicativefactorintoadditivebyvirtueofthedefinitionoflogarithmicgain,.,BodediagramofanRCfilter,.,.,Nicholschart,0o,180o,-180o,w,0,-20dB,20dB,.,Frequencyresponseplotsoftypicalelements,GainPoleatoriginZeroatorigin,.,Poleontherealaxis(jwT+1)Zeroontherealaxis(jwT+1)TwocomplexpolesTwocomplexzeros,.,.,.,.,.,Bodediagramofatwin-Tnetwork,.,.,8.3DrawingtheBodediagram,.,.,.,.,.,.,DrawingBodediagram:(1)(2)DrawtheasymptoticapproximationofL()inthelowfrequencyrange;(3)Changetheslopeatthebreakfrequency;(4)Thisapproximationcanbecorrectedtotheactualmagnitude.,.,(1)La(w)=20lgK20lgw(2)w1,La(w)=20lgK(3),-20dB/dec,1,20lgK,w,.,8.4Performancespecificationinthefrequencydomain,Attheresonantfrequen

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论