




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5讲两角和与差的正弦、余弦和正切【2020年高考会这样考】1考查利用两角和与差的正弦、余弦、正切公式及倍角公式进行三角函数式的化简与求值2利用三角公式考查角的变换、角的范围【复习指导】本讲复习应牢记和、差角公式及二倍角公式,准确把握公式的特征,活用公式(正用、逆用、变形用、创造条件用);同时要掌握好三角恒等变换的技巧,如变换角的技巧、变换函数名称的技巧等基础梳理1两角和与差的正弦、余弦、正切公式(1)C():cos() (2)C():cos() (3)S():sin() (4)S():sin() (5)T():tan() ;(6)T():tan() .2二倍角的正弦、余弦、正切公式(1)S2:sin 2 ;(2)C2:cos 2 (3)T2:tan 2 .3有关公式的逆用、变形等(1)tan tan tan()(1tan_tan_);(2)cos2,sin2;(3)1sin 2(sin cos )2,1sin 2(sin cos )2,sin cos sin.4函数f()acos bsin (a,b为常数),可以化为f()sin()或f()cos(),其中可由a,b的值唯一确定两个技巧(1)拆角、拼角技巧:2()();();.(2)化简技巧:切化弦、“1”的代换等三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等双基自测1下列各式的值为的是()A2cos2 1 B12sin275C. Dsin 15cos 152若tan 3,则的值等于()A2 B3 C4 D63已知sin ,则cos(2)等于()A B C. D.4设sin,则sin 2()A B C. D.5tan 20tan 40tan 20 tan 40_.考向一三角函数式的化简【例1】化简. 三角函数式的化简要遵循“三看”原则:(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式;(3)三看“结构特征”,分析结构特征,找到变形的方向【训练1】 化简:.考向二三角函数式的求值【例2】已知0,且cos,sin,求cos()的值 三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”关系【训练2】 已知,sin ,tan(),求cos 的值 通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:已知正切函数值,选正切函数;已知正、余弦函数值,选正弦或余弦函数;若角的范围是,选正、余弦皆可;若角的范围是(0,),选余弦较好;若角的范围为,选正弦较好【训练3】 已知,且tan ,tan 是方程x23x40的两个根,求的值考向四三角函数的综合应用【例4】已知函数f(x)2cos 2xsin2x.(1)求f的值;(2)求f(x)的最大值和最小值 高考对两角和与差的正弦、余弦、正切公式及二倍角公式的考查还往往渗透在研究三角函数性质中需要利用这些公式,先把函数解析式化为yAsin(x)的形式,再进一步讨论其定义域、值域和最值、单调性、奇偶性、周期性、对称性等性质【训练4】 已知函数f(x)2sin(x)cos x.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值难点突破10三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如(),2()()等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论【示例】已知tan 2,则的值为_二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角【示例】已知tan(),tan ,且,(0,),求2的值三角恒等变换与向量的综合问题(教师备选)两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省云和县2025年上半年事业单位公开遴选试题含答案分析
- 农业种子市场探索
- 南召县六年级英语课本上册单词表卡通版
- 河北省辛集市2025年上半年事业单位公开遴选试题含答案分析
- 河北省威县2025年上半年事业单位公开遴选试题含答案分析
- 河北省孟村回族自治县2025年上半年公开招聘村务工作者试题含答案分析
- 河北省乐亭县2025年上半年事业单位公开遴选试题含答案分析
- 2025年半合成金属切削液生产线租赁与维护合同
- 2025年度党支部党建联建文化旅游合作协议书
- 2025年建筑材料研发与知识产权保护承包协议
- 山西省太原市2024-2025学年高一上学期期末考试 数学 含解析
- 慈溪教育局劳动合同
- 2025年水发集团有限公司招聘笔试参考题库含答案解析
- DL-T 5876-2024 水工沥青混凝土应用酸性骨料技术规范
- 骨科术后下肢肿胀护理
- 小区电力配套施工组织方案
- 书法爱好者交流会活动方案
- Unit 1 This is me reading I 教学设计2024-2025学年译林版英语七年级上册
- 河南省南阳市2023-2024学年小升初语文试卷(含答案)
- 外科学-心脏疾病课件
- 七上人教地理新教材教学计划 2024-2025学年七年级地理上册(人教版2024)
评论
0/150
提交评论