高中数学23数列通项公式的探求及证明问题的研究试题无答案苏教版必修5(通用)_第1页
高中数学23数列通项公式的探求及证明问题的研究试题无答案苏教版必修5(通用)_第2页
高中数学23数列通项公式的探求及证明问题的研究试题无答案苏教版必修5(通用)_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

23. 数列通项公式的探求及证明问题的研究【教学建构】 探究1 基础热身 已知在数列中,则数列的通项公式为_. 已知在数列中,则数列的通项公式为_. 已知在数列中,则数列的通项公式为_. 已知在数列中,则数列的通项公式为_. 已知在数列中,则数列的通项公式为_.探究2 如何推求下列数列的通项公式? ; ; ; 探究3(1)已知数列满足,求证:是等比数列,并求数列的通项公式. (2)已知数列满足,求证:是等比数列,并求数列的通项公式.(3)设数列an,a1=1,数列bn,正数数列dn,求证:数列bn为等差数列;(4)(2020年江苏高考题)已知各项均为正数的两个数列和满足:.设,求证:数列是等差数列.探究4 (1)设,则数列通项公式=_.(2)已知数列an满足:a1 = a2 = 1,(),则= (3)已知数列的前项和(),满足,则数列的通项公式为_.(4)各项都为正数的数列,其前项的和为,若,且数列的前项的和为,则= . 【复习思考】整理笔记,巩固记忆课堂教学内容.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论