高中数学第二单元平面向量2.2.2向量的正交分解与向量的直角坐标运算课件新人教B版必修4.ppt_第1页
高中数学第二单元平面向量2.2.2向量的正交分解与向量的直角坐标运算课件新人教B版必修4.ppt_第2页
高中数学第二单元平面向量2.2.2向量的正交分解与向量的直角坐标运算课件新人教B版必修4.ppt_第3页
高中数学第二单元平面向量2.2.2向量的正交分解与向量的直角坐标运算课件新人教B版必修4.ppt_第4页
高中数学第二单元平面向量2.2.2向量的正交分解与向量的直角坐标运算课件新人教B版必修4.ppt_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2.2向量的正交分解与向量的直角坐标运算,第二章2.2向量的分解与向量的坐标运算,学习目标1.了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一平面向量的正交分解,思考,如果向量a与b的基线互相垂直,则称向量a与b垂直,记作ab.互相垂直的两个向量能否作为平面内所有向量的一组基底?,答案互相垂直的两个向量能作为平面内所有向量的一组基底.,答案,梳理,如果基底的两个基向量e1,e2互相垂直,则称这个基底为.在正交基底下分解向量叫做.,正交基底,正交分解,思考1,知识点二平面向量的坐标表示,如图,向量i,j是两个互相垂直的单位向量,向量a与i的夹角是30,且|a|4,以向量i,j为基底,如何表示向量a?,答案,思考2,答案,在平面直角坐标系内,给定点A的坐标为A(1,1),则A点位置确定了吗?给定向量a的坐标为a(1,1),则向量a的位置确定了吗?,答案对于A点,若给定坐标为A(1,1),则A点位置确定.对于向量a,给定a的坐标为a(1,1),此时给出了a的方向和大小,但因为向量的位置由起点和终点确定,且向量可以任意平移,因此a的位置还与其起点有关,所以不确定.,(1)基底:在直角坐标系xOy内,分别取与x轴和y轴方向的两个_e1,e2.这时,我们就在坐标平面内建立了一个e1,e2.这个基底也叫做直角坐标系xOy的基底.(2)坐标分量:在坐标平面xOy内,任作一向量a(用有向线段表示),由平面向量基本定理可知,存在唯一的有序实数对(a1,a2),使得a,(a1,a2)就是向量a在基底e1,e2下的坐标,即a,其中a1叫做向量a在上的坐标分量,a2叫做a在上的坐标分量.(3)若xe1ye2(x,y),则的坐标(x,y)点A的坐标(x,y).,梳理,相同,单位,向量,正交基底,a1e1a2e2,(a1,a2),x轴,y轴,知识点三平面向量的坐标运算,思考,答案,设i、j是分别与x轴、y轴同向的两个单位向量,若设a(x1,y1),b(x2,y2),则ax1iy1j,bx2iy2j,根据向量的线性运算性质,向量ab,ab,a(R)如何分别用基底i、j表示?,答案ab(x1x2)i(y1y2)j,ab(x1x2)i(y1y2)j,ax1iy1j.,(1)若a(a1,a2),b(b1,b2),则ab,ab_,a(a1,a2).即两个向量的和与差的坐标等于两个向量;数乘向量的积的坐标等于数乘以向量_.(2)若A(x1,y1),B(x2,y2),则.即一个向量的坐标等于向量终点的坐标.(3)在直角坐标系xOy中,已知点A(x1,y1),点B(x2,y2).则线段AB中点的坐标为.,梳理,(a1b1,a2b2),(a1b1,,a2b2),(a1,a2),相应坐标的和与差,相应坐标,的积,(x2x1,y2y1),减去始点的坐标,题型探究,类型一平面向量的坐标表示,解答,例1如图,在平面直角坐标系xOy中,OA4,AB3,AOx45,OAB105,四边形OABC为平行四边形.(1)求向量a,b的坐标;,解作AMx轴于点M,,AOC18010575,AOy45,COy30.又OCAB3,,解答,(3)求点B的坐标.,反思与感悟,在表示点、向量的坐标时,可利用向量的相等、加减法运算等求坐标,也可以利用向量、点的坐标的定义求坐标.一般利用不等式思想求解,即把问题条件转化为关于参数的不等式(组),再解不等式(组)就可以求得参数的取值范围.,解答,跟踪训练1已知边长为2的正三角形ABC,顶点A在坐标原点,AB边在x轴上,点C在第一象限,D为AC的中点,分别求向量的坐标.,解如图,正三角形ABC的边长为2,则顶点A(0,0),B(2,0),C(2cos60,2sin60),,类型二平面向量的坐标运算,解答,解由已知,得a(5,5),b(6,3),c(1,8).3ab3c3(5,5)(6,3)3(1,8)(1563,15324)(6,42).,例2已知A(2,4),B(3,1),C(3,4).(1)求3ab3c;,解答,(2)求满足ambnc的实数m,n的值;,解mbnc(6mn,3m8n)a(5,5),,反思与感悟,向量坐标运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.(2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可完全类比数的运算进行.,解答,跟踪训练2已知a(1,2),b(2,1),求:(1)2a3b;解2a3b2(1,2)3(2,1)(2,4)(6,3)(4,7).(2)a3b;解a3b(1,2)3(2,1)(1,2)(6,3)(7,1).,解答,类型三平面向量坐标运算的应用,解答,例3已知点A(2,3),B(5,4),C(7,10).若(R),试求当为何值时:(1)点P在第一、三象限的角平分线上;,解设点P的坐标为(x,y),,(3,1)(5,7)(35,17).,若点P在第一、三象限的角平分线上,,解答,(2)点P在第三象限内.,当(,1)时,点P在第三象限内.,反思与感悟,(1)待定系数法是最基本的数学方法之一,实质是先将未知量设出来,建立方程(组)求出未知数的值,是待定系数法的基本形式,也是方程思想的一种基本应用.(2)坐标形式下向量相等的条件:相等向量的对应坐标相等;对应坐标相等的向量是相等向量.由此可建立相等关系求某些参数的值.,跟踪训练3已知向量a(2,1),b(1,2),若manb(9,8)(m,nR),则mn的值为_.,3,解析a(2,1),b(1,2),manb(2mn,m2n)(9,8),,答案,解析,故mn253.,当堂训练,答案,2,3,4,5,1,1.设平面向量a(3,5),b(2,1),则a2b等于A.(7,3)B.(7,7)C.(1,7)D.(1,3),2,3,4,5,1,答案,解析,答案,解析,2,3,4,5,1,解析设D点坐标为(x,y),,2,3,4,5,1,答案,解析,A.(7,4)B.(7,4)C.(1,4)D.(1,4),答案,解析,5.如图,在66的方格纸中,若起点和终点均在格点的向量a,b,c满足cxayb(x,yR),则xy_.,解析建立如图所示的平面直角坐标系,设小方格的边长为1,则可得a(1,2),b(2,3),c(3,4).,2,3,4,5,1,1.向量的正交分解是把一个向量分解为两个互相垂直的向量,是向量坐标表示的理论依据.向量的坐标表示,沟通了向量“数”与“形”的特征,使向量运算完全代数化.2.要区分向量终点的坐标与向量的坐标.由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论