




已阅读5页,还剩39页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章数列,2.2等差数列的前n项和(一),1.掌握等差数列前n项和公式及其获取思路.2.经历公式的推导过程,体验从特殊到一般的研究方法,学会观察、归纳、反思.3.熟练掌握等差数列的五个量a1,d,n,an,Sn的关系,能够由其中三个求另外两个.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一等差数列前n项和公式的推导,高斯用123100(1100)(299)(5051)10150迅速求出了等差数列前100项的和.但如果是求123n,不知道共有奇数项还是偶数项怎么办?,答案,不知道共有奇数项还是偶数项导致不能配对.但我们可以采用倒序相加来回避这个问题:设Sn123(n1)n,又Snn(n1)(n2)21,2Sn(1n)2(n1)(n1)2(n1),2Snn(n1),Sn.,“倒序相加法”可以推广到一般等差数列求前n项和,其方法如下:Sna1a2a3an1ana1(a1d)(a12d)a1(n2)da1(n1)d;Snanan1an2a2a1an(and)(an2d)an(n2)dan(n1)d.两式相加,得2Snn(a1an),由此可得等差数列an的前n项和公式Sn.根据等差数列的通项公式ana1(n1)d,代入上式可得Snna1.,梳理,知识点二等差数列前n项和公式的特征,思考1,等差数列an中,若已知a27,能求出前3项和S3吗?,答案,思考2,答案,我们对等差数列的通项公式变形:ana1(n1)ddn(a1d),分析出通项公式与一次函数的关系.你能类比这个思路分析一下Snna1d吗?,梳理,等差数列an的前n项和Sn,有下面几种常见变形:,知识点三等差数列前n项和公式的性质,(a4a5a6)(a1a2a3)(a4a1)(a5a2)(a6a3)3d3d3d9d,同样,(a7a8a9)(a4a5a6)9d.a1a2a3,a4a5a6,a7a8a9是公差为9d的等差数列.,思考,若an是公差为d的等差数列.那么a1a2a3,a4a5a6,a7a8a9是等差数列吗?如果是,公差是多少?,答案,梳理,等差数列的前n项和常用性质.(1)Sm,S2m,S3m分别为等差数列an的前m项,前2m项,前3m项的和,则Sm,S2mSm,S3mS2m也成等差数列,公差为m2d.(2)项的个数的“奇偶”性质.an为等差数列,公差为d.设S奇为前n项中序号为奇数的项之和.S偶为前n项中序号为偶数的项之和.,题型探究,命题角度1根据条件选择公式求和例1等差数列an中,公差为d,Sn为前n项和.(1)a13,d2,求S10;,解答,类型一求和,(2)a1105,an994,d7,求Sn.,解答,反思与感悟,跟踪训练1(1)已知数列an中,a11,anan1(n2),则数列an的前9项和等于_.,答案,解析,27,(2)等差数列an中,a4a70,则前10项的和为_.,答案,解析,0,命题角度2实际问题求和例2某人用分期付款的方式购买一件家电,价格为1150元,购买当天先付150元,以后每月的这一天都交付50元,并加付欠款利息,月利率为1%.若交付150元后的一个月开始算分期付款的第一个月,则分期付款的第10个月该交付多少钱?全部贷款付清后,买这件家电实际花费多少钱?,解答,设每次交款数额依次为a1,a2,a20,则a15010001%60(元),a250(100050)1%59.5(元),a1050(1000950)1%55.5(元),即第10个月应付款55.5元.由于an是以60为首项,以0.5为公差的等差数列,,反思与感悟,建立等差数列的模型时,要根据题意找准首项、公差和项数或者首项、末项和项数.本题是根据首项和公差选择前n项和公式进行求解.,跟踪训练2植树节某班20名同学在一段直线公路一侧植树,每人植树一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一棵树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,此最小值为_米.,答案,解析,2000,假设20位同学是1号到20号依次排列,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,则树苗需放在第10或第11号树坑旁,此时两侧的同学所走的路程都组成以20为首项,20为公差的等差数列,故所有同学往返的总路程为,类型二等差数列前n项和公式的应用,例3已知一个等差数列an前10项的和是310,前20项的和是1220,由这些条件能确定这个等差数列的前n项和的公式吗?,解答,方法一由题意知S10310,S201220,,反思与感悟,(1)在解决与等差数列前n项和有关的问题时,要注意方程思想和整体思想的运用;(2)构成等差数列前n项和公式的元素有a1,d,n,an,Sn,知其三能求其二.,跟踪训练3在等差数列an中,已知d2,an11,Sn35,求a1和n.,解答,类型三等差数列前n项和性质的应用,例4(1)等差数列an的前m项和为30,前2m项和为100,求数列an的前3m项的和S3m;,解答,方法一在等差数列中,Sm,S2mSm,S3mS2m成等差数列.30,70,S3m100成等差数列.27030(S3m100),S3m210.,解答,反思与感悟,等差数列前n项和Sn的有关性质在解题过程中,如果运用得当可以达到化繁为简、化难为易、事半功倍的效果.,跟踪训练4设an为等差数列,Sn为数列an的前n项和,已知S77,S1575,Tn为数列的前n项和,求Tn.,解答,当堂训练,1.在等差数列an中,若S10120,则a1a10的值是A.12B.24C.36D.48,答案,解析,1,2,3,4,答案,解析,2.记等差数列的前n项和为Sn,若S24,S420,则该数列的公差d等于A.2B.3C.6D.7,解得d3.方法二由S4S2a3a4a12da22dS24d,所以20444d,解得d3.,1,2,3,4,答案,解析,3.在一个等差数列中,已知a1010,则S19_.,190,1,2,3,4,解答,1,2,3,4,解答,(2)a11,an512,Sn1022,求d.,1,2,3,4,规律与方法,1.求等差数列前n项和公式的方法称为倒序相加法,在某些数列求和中也可能用到.2.等差数列的两个求和公式中,一共涉及a1,an,Sn,n,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 材料疲劳裂纹萌生研究进展重点基础知识点
- 物业高层火灾应急预案(3篇)
- 化工厂消防火灾应急预案(3篇)
- 總体经济政策的目标与措施试题及答案
- 儿科发生火灾的应急预案(3篇)
- 2025年软件设计师考试的自我激励策略试题及答案
- 行政管理分析试题及答案解析
- 火灾及处突应急预案(3篇)
- 2025年软考网络管理员科研能力试题及答案
- 公司战略与组织结构设计试题及答案
- 平凡世界课件
- 课件吸烟有害健康
- 15D501 建筑物防雷设施安装
- 取水泵站施工方案
- 医疗纠纷应急处置预案
- (新教材)细胞核是细胞生命活动的控制中心(公开课)课件
- 教师职业道德与专业发展智慧树知到课后章节答案2023年下山东师范大学
- 企业安全生产风险辨识评估管控指导手册-危险货物储罐仓储
- 监控立杆基础国家标准
- 大病历体格检查-系统回顾(精简版)
- 济南出入境检验检疫局国际旅行卫生保健中心
评论
0/150
提交评论