绪论半导体材料研究的新进展_第1页
绪论半导体材料研究的新进展_第2页
绪论半导体材料研究的新进展_第3页
绪论半导体材料研究的新进展_第4页
绪论半导体材料研究的新进展_第5页
已阅读5页,还剩93页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

半导体材料与工艺,甘国友教授昆明理工大学材料与冶金工程学院二OO七年七月,主要参考资料:1半导体材料杨树人著科学出版社2004年3月2半导体物理刘恩科著国防工业出版社1994年4月3半导体器件正田英介著科学出版社2001年月,基本教材:半导体材料邓志杰郑安生编著化学工业出版社2004.10,0.1序以集成电路(IC)技术(微电子技术)为代表的半导体技术是近50多年来发展最迅速的技术。半导体技术生产生活、国防科技(Si、Ge、GaAs、InP、HgCdTe、GaN、SiC)半导体技术是衡量一个国家科学技术发展水平的一项重要标志。,根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。,半导体:导电能力介于导体和绝缘体之间的一大类固体材料。贝格尔:10-51011cm;林兰英、万群:10-3109cm师昌绪:10-3107cm邓志杰、郑安生:10-41010cm,半导体的导电特性,常见的半导体材料有硅、锗、硒及许多金属的氧化物和硫化物等。半导体材料多以晶体的形式存在。,半导体材料的特性:,纯净半导体的导电能力很差;温度升高导电能力增强;光照增强导电能力增强;掺入少量杂质导电能力增强。,半导体与金属、绝缘体之间的界限也不是绝对的。重掺杂半导体的导电性能与金属类似(可具有正的电阻温度系数);在低于1K温度下,有些半导体(如GeTe、SnTe、SrTiO3等)可显示出超导性;纯净的半导体材料在较低温度下(低于其本征激发温度)下就是绝缘体;半导体材料并不仅限于固体,也有液态半导体。,完全纯净、具有一定晶体结构的半导体,0.2半导体分类一、本征半导体,最常用的半导体为硅(Si)和锗(Ge)。它们的共同特征是四价元素,每个原子最外层电子数为4。,Si,Ge,提纯的硅材料可形成单晶单晶硅,相邻原子由外层电子形成共价键,共价键,硅原子,价电子受到激发,形成自由电子并留下空穴。,半导体中的自由电子和空穴都能参与导电半导体具有两种载流子。,载流子的产生与复合:,共价键,价电子,自由电子和空穴同时产生,本征半导体中的自由电子和空穴总是成对出现,同时又不断进行复合。在一定温度下,载流子的产生与复合会达到动态平衡,即载流子浓度与温度有关。温度愈高,载流子数目就愈多,导电性能就愈好温度对半导体器件的性能影响很大。半导体中的价电子还会受到光照而激发形成自由电子并留下空穴。光强愈大,光子就愈多,产生的载流子亦愈多,半导体导电能力增强。故半导体器件对光照很敏感。杂质原子对导电性能的影响将在下面介绍。,二.N型半导体和P型半导体,1.本征半导体与掺杂半导体,在常温下,本征半导体的两种载流子数量还是极少的,其导电能力相当低。,如果在半导体晶体中掺入微量杂质元素,将得到掺杂半导体,而掺杂半导体的导电能力将大大提高。,由于掺入杂质元素的不同,掺杂半导体可分为两大类N型半导体和P型半导体。,2.N型半导体,当在硅或锗的晶体中掺入微量磷(或其它五价元素)时,磷原子与周围的四个硅原子形成共价键后,磷原子的外层电子数将是9,比稳定结构多一个价电子。,P,掺入磷杂质的硅半导体晶体中,自由电子的数目大量增加。自由电子是这种半导体的导电方式,称之为电子半导体或N型半导体。,在N型半导体中电子是多数载流子、空穴是少数载流子。,室温情况下,本征硅中n0=p01.51010/cm3,当磷掺杂量在106量级时,电子载流子数目将增加几十万倍。,3.P型半导体,当在硅或锗的晶体中掺入微量硼(或其它三价元素)时,硼原子与周围的四个硅原子形成共价键后,硼原子的外层电子数将是7,比稳定结构少一个价电子。,B,掺硼半导体中,空穴的数目远大于自由电子的数目。空穴为多数载流子,自由电子是少数载流子,这种半导体称为空穴型半导体或P型半导体。,一般情况下,掺杂半导体中多数载流子的数量可达到少数载流子的1010倍或更多,电子载流子数目将增加几十万倍。,不论是N型半导体还是P型半导体,都只有一种多数载流子。然而整个半导体晶体仍是电中性的。,三、半导体材料的应用简介,1.p-n结和晶体管,p-n结是构成各种半导体器件的基础,其最重要的特性是单向导电性,P-n结的构造:,P型半导体与n型半导型接触形成的偶电层结构这种结构称为P-n结。,扩散,晶体管:二极管和三极管,二极管单向导电,三极管放大,P-n结整流特性,0.18微米上海“汉芯一号”,利用0.3微米线宽工艺在10mm20mm的芯片上集成了1.4亿个元件,即集成密度达70万个元件/毫米。每个芯片可包含多至上百万个晶体管。,晶体管小型化的速度是非常惊人的。从60年代线宽10微米,到90年代已达到线宽0.5微米或更小。,2集成电路:采用氧化、光刻、扩散掺杂等工艺把晶体管、电阻、电容等元件集成于一块半导体芯片上,封装成多脚的器件。主要优点:小、轻、电路性能好且可靠,成本低。电子产品的不断更新换代,主要得益于集成电路技术的迅速发展,3半导体激光器,4太阳能电池(光生伏特特性),光纤通信是未来通信的发展方向,用的主要是半导体激光器。半导体激光器与发光二极管都是靠材料中的电子和空穴退激使发光,硅和锗等元素半导体退激时只引起发热,砷化镓等化合物半导体中退激时会发光。砷化镓发近红外光。,太阳能电池是利用PN结的光生伏特效应,最重要的参数是电转换效率,非晶硅太阳电池,转换效率约10%,成本低;砷化镓晶体太阳电池转换效率可达20%以上,但成本高。太阳能电池广泛应用于人造卫星和航天器上。,0.3半导体材料的分类元素半导体有8种;二元无机化合物半导体有600多种;三元无机化合物有400多种。(变组分、多元、有机等),0.4半导体材料的基本性质,0.4.1半导体的晶体结构半导体的晶体结构一般指构成半导体单晶材料的原子在空间的排列形式。(金刚石型、闪锌矿型、纤锌矿型、NaCl型),面心立方,金刚石、闪锌矿,钙钛矿,0.4.2半导体的化学键元素半导体共价键(饱和性和方向性109o28);化合物半导体共价键为主,具有一定的离子键成分;,0.4.3半导体的能带直接带隙;间接带隙;,0.4.4半导体的电导,在外电场E作用下,电子和空穴的漂移速度为:,半导体的电流密度J为:,根据欧姆定律:,所以,,0.4.5半导体的霍尔效应,霍尔效应是测量半导体材料导电类型、载流子浓度和迁移率等基本性能和霍尔效应器件应用的基础。,0.4.6半导体的光学性质,(1).光吸收与光电导,本征吸收,本征吸收使电子、空穴浓度分别增加n、p,则半导体电导率增量为:,半导体光电导效应,(2).光生伏特效应,适当波长的光照射非均匀半导体(如pn结),由于内建电场的作用(无外电场),半导体内部产生电动势,这种由内建电场引进的光电效应就是光生伏特效应。,0.5半导体中的杂质和缺陷,0.5.1杂质,N型掺杂P型掺杂,浅能级杂质深能级杂质,(掺杂类型),(杂质能级),(导电性能),(掺杂方式),电活性杂质电中性杂质,替位式杂质间隙式杂质,0.5.2缺陷,点缺陷、线缺陷、面缺陷、体缺陷,弗仑克尔缺陷:一定温度下,格点原子在平衡位置附近振动,其中某些原子能够获得较大的热运动能量,克服周围原子化学键束缚而挤入晶体原子间的空隙位置,形成间隙原子,原先所处的位置相应成为空位。这种间隙原子和空位成对出现的缺陷称为弗仑克尔缺陷。肖特基缺陷:由于原子挤入间隙位置需要较大的能量,所以常常是表面附近的原子A和B依靠热运动能量运动到外面新的一层格点位置上,而A和B处的空位由晶体内部原子逐次填充,从而在晶体内部形成空位,而表面则产生新原子层,结果是晶体内部产生空位但没有间隙原子,这种缺陷称为肖特基缺陷。,肖特基缺陷和弗仑克尔缺陷统称点缺陷。虽然这两种点缺陷同时存在,但由于在Si、Ge中形成间隙原子一般需要较大的能量,所以肖特基缺陷存在的可能性远比弗仑克尔缺陷大,因此Si、Ge中主要的点缺陷是空位,(a)弗仑克尔缺陷(b)肖特基缺陷图1.11点缺陷,化合物半导体GaAs中,如果成份偏离正常化学比,也会出现间隙原子和空位。如果Ga成份偏多会造成Ga间隙原子和As空位;As成份偏多会造成As间隙原子和Ga空位。化学比偏离还可能形成所谓反结构缺陷,如GaAs晶体中As的成份偏多,不仅形成Ga空位,而且As原子还可占据Ga空位,称为反结构缺陷。此外高能粒子轰击半导体时,也会使原子脱离正常格点位置,形成间隙原子、空位以及空位聚积成的空位团等。,位错是晶体中的另一种缺陷,它是一种线缺陷。半导体单晶制备和器件生产的许多步骤都在高温下进行,因而在晶体中会产生一定应力。在应力作用下晶体的一部分原子相对于另一部分原子会沿着某一晶面发生移动,如图1.12(a)所示。这种相对移动称为滑移,在其上产生滑移的晶面称为滑移面,滑移的方向称为滑移向。,(a)(b)图1.12应力作用下晶体沿某一晶面的滑移,实验表明滑移运动所需应力并不很大,因为参加滑移的所有原子并非整体同时进行相对移动,而是左端原子先发生移动推动相邻原子使其发生移动,然后再逐次推动右端的原子,最终是上下两部分原子整体相对滑移了一个原子间距b,见图1.12(b)。这时虽然在晶体两侧表面产生小台阶,但由于内部原子都相对移动了一个原子间距,因此晶体内部原子相互排列位置并没有发生畸变。在上述逐级滑移中会因为应力变小而使滑移中途中止,就出现了图1.13(a)所示的情况。如果中途应力变小使滑移中止,滑移的最前端原子面AEFD左侧原子都完成了一个原子间距的移动,而右侧原子都没有移动,其结果是好像有一个多余的半晶面AEFD插在晶体中,见图1.13(b)。,在AD线周围晶格产生畸变,而距AD线较远处似乎没有影响,原子仍然规则排列,这种缺陷称为位错,它是一种发生在AD线附近的线缺陷,AD线称为位错线。图1.13中滑移方向BA与位错线AD垂直,称为棱位错。因为它有一个多余的半晶面AEFD像刀一样插入晶体,也称刃形位错,(a)(b)图1.13刃型位错,图1.14所示的称为螺旋位错的滑移是沿BC方向,而原子移动沿BA方向传递,位错线AD和滑移方向平行。与刃型位错不同的是,这时晶体中与位错线AD垂直的晶面族不再是一个个平行面,而是相互连接、延续不断并形成一个整体的螺旋面。,图1.14螺旋位错,半导体中往往包含很多彼此平行的位错线,它们一般从晶体一端沿伸到另一端,与表面相交。半导体中还存在因原子排列次序的错乱而形成的一种面缺陷,称为层错。Si晶体中常见的层错有外延层错和热氧化层错。,在深入理解缺陷的基础上,既要努力减少缺陷,也可利用某些缺陷去控制或抵消另外一些难以消除的缺陷的有害影响,以提高器件的成品率和可靠性。,0.5.3缺陷工程,0.6半导体材料的性能检测,半导体材料性能检测技术,材料生长过程中的原位检测技术高分辨率的快速、无损、自动化测试技术极端条件(极低温、强磁场、超高压等)下半导体材料检测技术,0.7材料的应用发展趋势,半导体材料研究的新进展,1半导体材料的战略地位,上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术,的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。,2几种主要半导体材料的发展现状,2.1硅材料,从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(ICs)技术正处在由实验室向工业生产转变中。目前300mm,0.18m工艺的硅ULSI生产线已经投入生产,300mm,0.13m工艺生产线也在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。从进一步提高硅ICs的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。,理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还,把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。,2.2GaAs和InP单晶材料,GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。,目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的23英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的Si-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的Si-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。,GaAs和InP单晶的发展趋势是:(1).增大晶体直径,目前4英寸的Si-GaAs已用于生产,预计直径为6英寸的Si-GaAs也将投入工业应用;(2).提高材料的电学和光学微区均匀性;(3).降低单晶的缺陷密度,特别是位错;(4).GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。,2.3半导体超晶格、量子阱材料,半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。(1).V族超晶格、量子阱材料。GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等,GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3m和1.5m的量子阱激光器和探测器,红、,黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5m分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了8040Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。,虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(0.01m)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。,最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。2001年瑞士Neuchatel大学,的科学家采用双声子共振和三量子阱有源区结构使波长为9.1m的QCLs的工作温度高达312K,连续输出功率3mW。量子级联激光器的工作波长已覆盖近红外到远红外波段(387m),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5m和250K8m的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7m室温准,连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。目前,V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75104片4英寸或1.5104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。,生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。(2)硅基应变异质结构材料。硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为09db,其性能可与GaAs器件相媲美。,尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。,2.4一维量子线、零维量子点半导体微结构材料,基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。,目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lm左右,单管室温连续输出功率高达3.64W。,特别应当指出的是我国的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。,在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用025微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。,与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAsInAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。,王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。,香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。,目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。,2.5宽带隙半导体材料,宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260msmm;HEMT器件也相继问世,发展很快。此外,256256GaN基紫外光电焦平面阵列探测器,也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。,以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。IIVI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了IIVI族的P型掺杂难点而得到迅速发展。,1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了IIVI族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前ZnSe基IIVI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使IIVI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。,宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。,目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,IIVI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。,3光子晶体,光子晶体是一种人工微结构材料,介电常数周期地被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。,如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可见光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5m和1.5m光子带隙材料等。,目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。,4量子比特构建与材料,随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。,1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。所谓量子计算机是应用量子力学原理进行计算的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。,其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。,量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。,5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论