高二数学导数在实际生活中的应用教案 苏教版_第1页
高二数学导数在实际生活中的应用教案 苏教版_第2页
高二数学导数在实际生活中的应用教案 苏教版_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高二数学导数在实际生活中的应用教案一、引入导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。而要求最值,首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。本节课我们将重点研究两个方面的内容:1、与几何有关的最值问题;2、与物理学有关的最值问题。二、新授1、与几何有关的最值问题:例1、在边长为60cm的正方形铁皮的四角切去边长相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底的铁皮箱,箱底边长为多少时,箱子容积最大?最大容积是多少?例2、某种圆柱形饮料罐的容积为V,如何确定它的高与底半径,才能使它的用料最省?变式1:表面积为定值S,如何制造,才能使其容积最大?变式2:例中若罐底单位造价为周围单位造价为侧壁部分单位造价的2倍,如何设计尺寸,使总造价最低?变式3:有一底半径为r(cm),高为h(cm)的倒立的圆锥容器,若以n(cm3)/s的速度向容器里注水,求注水t(s)的水面上长的速度。2、与利润及其成本有关和最值问题:例3、在经济学中,生产x单位产品的成本称为成本函数同,记为C(x),出售x单位产品的收益称为收益函数,记为R(x),R(x)C(x)称为利润函数,记为P(x)。(1)、如果C(x),那么生产多少单位产品时,边际最低?(边际成本:生产规模增加一个单位时成本的增加量)(2)、如果C(x)=50x10000,产品的单价P1000.01x,那么怎样定价,可使利润最大?变式:已知某商品生产成本C与产量q的函数关系是:C1004

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论