




已阅读5页,还剩62页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,祝大家新学期:生活愉快,学习进步!,数字电子技术基础,材料与光电物理学院微电子专业任课教师:余云霞,第2章逻辑代数基础,2.1概述2.2逻辑代数的三种基本运算2.3逻辑代数的基本公式和常用公式2.4逻辑代数的基本定理2.5逻辑函数及其表示方法2.6逻辑函数的化简方法2.7具有无关项的逻辑函数的化简,2.1概述,逻辑代数逻辑代数是英国数学家乔治.布尔(Geroge.Boole)于1847年首先进行系统论述的,也称布尔代数;由于被用在开关电路的分析和设计上,所以又称开关代数。逻辑代数中的变量称为逻辑变量,用大写字母表示。逻辑变量的取值只有两种,即逻辑0和逻辑1。0和1并不表示数值的大小,而是表示两种对立的逻辑状态。逻辑运算:两个表示不同逻辑状态的二进制数码之间按照某种因果关系进行的运算。功能描述方法有:1)真值表:即将自变量和因变量(输入变量和输出变量)的所有组合对应的值全部列出来形成的表格。2)逻辑符号:用规定的图形符号来表示。,1.与、或、非的定义如图1-1所示,以开关A、B的状态作为条件,闭合表示条件具备,断开表示条件不具备;以指示灯Z的状态作为结果,灯亮表示结果发生,灯不亮表示结果不发生。,图2-1指示灯控制电路,2.2逻辑代数的三种基本运算,与:只有决定事情发生的全部条件同时具备时,结果才发生,又称逻辑乘。或:只要决定事情发生的全部条件至少具备一个时,结果就发生,又称逻辑加。非:条件具备时,结果不发生,条件不具备时,结果一定发生,又称逻辑求反。,2与、或、非的真值表,表2-1与的真值表,表2-2或的真值表,表2-3非的真值表,3与、或、非的逻辑运算符号与:“”或者省略。如:Z=AB或者;或:“+”。如:Z=A+B;非:变量上方的“”表示。如:。,4与、或、非的逻辑符号,图2-2与、或、非的逻辑符号,5复合逻辑运算:与非、或非、与或非、异或、同或与非的逻辑运算符号:,表2-4与非的真值表,图2-3与非的逻辑符号,或非的逻辑运算符号:,图2-4或非的逻辑符号,表2-5或非的真值表,与或非的逻辑运算符号是:,图2-5与或非的逻辑符号,表2-6与或非的真值表,异或运算的定义是输入相异,输出为1;输入相同,输出为0。其逻辑运算符号是。,表2-7异或的真值表,图2-6异或的逻辑符号,同或运算的定义是输入相同,输出为1;输入相异,输出为0。其逻辑运算符号是。,表2-8同或的真值表,图2-7同或的逻辑符号,2.3逻辑代数的基本公式和常用公式,1.18个基本公式变量和常量之间的运算规则:重叠律:互补律:交换律:结合律:分配律:反演律:还原律:求反运算:,2.若干常用公式,口诀:长中含短,留下短。,口诀:长中含反,去掉反。,口诀:正负相对,余全完。,说明:两个(或两个以上)变量的与非(或非)运算等于两个(或两个以上)变量的非或(非与)运算。,德摩根定理(DeMorgan),公式的证明:例如:证明:,代入定理:在任何一个含有变量A的逻辑等式中,若以一函数式取代该等式中所有A的位置,该等式仍然成立。反演定理:在一个逻辑式Y中,若将其中所有的“+”变成“”,“”变成“+”,“0”变成“1”,“1”变成“0”,原变量变成反变量,反变量变成原变量,所得函数式即为原函数式的反逻辑式,记作:。注意:a)运算的优先顺序。b)不是单个变量上的非号应保留不变。,2.4逻辑代数的基本定理,例1-1试用反演定理求函数式的反逻辑式。解:对偶式:在一个逻辑式中,若将其中所有的“+”变成“”,“”变成“+”,“0”变成“1”,“1”变成“0”,所得函数式即为原函数式的对偶式,记作:。对偶定理:若两个函数式相等,那么它们的对偶式也相等。例1-2试求函数式的对偶式。解:,2.5逻辑函数及其表示方法,2.5.1逻辑函数:当输入变量取值确定之后,输出变量取值便随之而定,输出变量和输入变量之间是一种函数关系。逻辑函数的表示方法:逻辑真值表、逻辑函数式、逻辑图、波形图和卡诺图。2.5.2.逻辑函数的表示方法1.逻辑真值表:是由输出变量取值与对应的输入变量取值所构成的表格。列写方法是:a)找出输入、输出变量,并用相应的字母表示;b)逻辑赋值。c)列真值表。,用真值表证明:,三人表决电路,例如三人表决电路,当输入变量A、B、C中有两个或两个以上取值为1时,输出为1;否则,输出为0。1.逻辑真值表,表2-9三人表决电路的逻辑真值表,2.逻辑函数式,逻辑函数式:是将逻辑函数中输出变量与输入变量之间的逻辑关系用与、或、非等逻辑运算符号连接起来的式子,又称函数式或逻辑式。例如:三人表决电路的逻辑函数式:,3.逻辑图,逻辑图:是将逻辑函数中输出变量与输入变量之间的逻辑关系用与、或、非等逻辑符号表示出来的图形。三人表决电路的逻辑图:,图2-8三人表决电路的逻辑图,4.表示逻辑功能的波形图,5逻辑函数表示方法之间的相互转换,(1)真值表函数式a)找出真值表中使函数值为1的输入变量取值;b)每个输入变量取值都对应一个乘积项,变量取值为1,用原变量表示,变量取值为0,用反变量表示。c)将这些乘积项相加即可。,(2)函数式真值表首先在表格左侧将不同输入变量取值依次按递增顺序列出来,然后将每组输入变量取值代入函数式,并将得到的函数值对应地填在表格右侧即可。(3)函数式逻辑图将函数式转换成逻辑图的方法:从输入到输出分别用相应的逻辑符号取代函数式中的逻辑运算符号即可。(4)逻辑图函数式将逻辑图转换成函数式的方法:从输入到输出分别用相应的逻辑运算符号取代逻辑图中的逻辑符号即可。,2.5.3逻辑函数的两种标准形式,(1)最小项和的形式最小项:设m为包含n个因子的乘积项,且这n个因子以原变量形式或者反变量形式在m中出现且只出现一次,称m为n变量的一个最小项。n变量共有个最小项。最小项的编号规则:使最小项m值为1的输入变量取值所对应的十进制数既为该最小项的编号,记作。,表2-11三变量的最小项编号表,最小项的性质:a)对应任意一组输入变量取值,有且只有一个最小项值为1;b)任意两个最小项之积为0;c)全体最小项之和为1;d)具有逻辑相邻性的两个最小项相加,可合并为一项,并消去一个不同因子。将函数式化成最小项和的形式的方法为:该函数式中的每个乘积项缺哪个因子,就乘以该因子加上其反变量,展开即可。,例2-3:写出的最小项之和式。,最小项之和式为:,解:,例2-4将函数式化成最小项和的形式。解:,(2)最大项积的形式最大项:设M为包含n个因子的和,且这n个因子以原变量形式或者反变量形式在M中出现且只出现一次,称M为n变量的一个最大项。n变量共有个最大项。最大项的编号规则:使最大项M值为0的输入变量取值所对应的十进制数既是最大项的编号,记作Mi。在一个或与逻辑式中,若所有的或项均为最大项,则该逻辑式称为最大项之积形式。,表2-12三变量的最大项编号表,最大项的性质:a)对应任意一组输入变量取值,有且只有一个最大项值为0;b)任意两个最大项之和为1;c)全体最大项之积为0;d)具有逻辑相邻性的两个最大项相乘,可合并为一项,并消去一个不同因子。将函数式化成最大项积的形式的方法为:首先化成最小项和的形式,然后直接写成除了这些最小项编号以外的最大项积的形式。,例2-5将函数式化成最大项积的形式。解:,(3)最小项和最大项的性质,n变量的全部最小项之和恒为1,全部最大项的之积恒为0。,任意两个最小项之积恒为0,任意两个最大项之和恒等于1。,n变量的每一个最小(大)项有n个相邻项(相邻项是指两个最小项只有一个因子互为反变量,其余因子均相同,又称为逻辑相邻项)。,若给定,则,(4)最小项和最大项的关系互为反函数,则,求反函数,求对偶式,求最大项之积式,解:,例2-7:写出的最大项之积式。,解:已知,则,2.5.4逻辑函数形式的变换,在电子器件组成实际的逻辑电路时,由于选用不同逻辑功能类型的器件,还必须将逻辑函数式变换成相应的形式。逻辑函数式的八种类型与-或式、与非-与非式、或-与非式、或非-或式、与或非式、与非-与式、或-与式、或非-或非式。与或式与非-与非式:将与或式两次求反,并用一次德摩根定理即可。,例2-8试将函数式转换成与非-与非式。解:,与或式与或非式:先将与或式化成最小项和的形式,然后直接写成除了这些最小项编号以外的那些编号的最小项的或非形式。例2-9试将函数式转换成与或非式。解:,2.6逻辑函数的化简方法,2.6.1公式化简法2.6.2卡诺图化简法2.6.3奎恩麦克拉斯基化简法(Q-M法),逻辑函数的化简,化简要求要求1、逻辑表达式最简(器件最少,速度最快)要求2、逻辑运算关系统一(器件型号统一)化简目标:最简与或表达式乘积项最少且乘积项中变量因子最少。逻辑表达式的类型:与或非,或非-或非,或与,与或,与非-与非,解:对比可知式1含4个与项,其他3式都只含3个与项,所以式1肯定不是最简;式3、4中各与项都含2个变量,而式2中有一个与项含3个变量。结论:式3、4同为该函数的最简与或表达式。,例如,以下4个“与或”表达式是相等的,即他们表示同一函数试判断哪一个试最简“与或”表达式?,2.6.1公式化简法,逻辑函数的公式化简法:是指熟练运用所学基本公式和常用公式,将一个函数式化成最简形式。与或式最简形式的标准是:该与或式中包含的乘积项的个数不能再减少,且每个乘积项所包含的因子数也不能再减少。化简逻辑函数目的:消去多余的乘积项和每个乘积项多余的因子,以得到逻辑函数的最简形式。常用公式化简法:并项法、吸收法、消因子法、消项法、配项法。,并项法,例如:,吸收法:例如:消因子法:例如:,消项法:和。例如:配项法:或。例如:,将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上也相邻地排列起来,所得到的图形叫做n变量的卡诺图(KarnaughMap)。,1.卡诺图的构成,AB,00,01,10,11,m0,m1,m2,m3,A,A,B,B,AB,A,B,1,0,1,0,m0,m1,m2,m3,mi,AB,AB,AB,二变量K图,建立多于二变量的卡诺图,则每增加一个逻辑变量就以原卡诺图的右边线(或底线)为对称轴作一对称图形,对称轴左面(或上面)原数字前增加一个0,对称轴右面(或下面)原数字前增加一个1。,2.6.2逻辑函数的卡诺图化简法,卡诺图是上下,左右闭合的图形。,几何相邻:一是相接,即紧挨着;二是相对,即任意一行或一列的两端;三是相重,即对折起来位置重合。,三变量K图,四变量K图,2.卡诺图描述逻辑函数,给出真值表,将真值表的每一行的取值填入卡诺图即可。填入Y1的项即可。,例:,0,0,0,1,0,1,0,1,1,1,1,给出逻辑函数的最小项之和式标准与或式,将逻辑函数的最小项在卡诺图上相应的方格中填1;其余的方格填0(或不填)。任何一个逻辑函数都等于其卡诺图上填1的那些最小项之和。,例:用卡诺图分别描述下列逻辑函数,解:,给出逻辑函数一般与或式,确定使每个与项为1的所有输入变量取值,并在卡诺图上对应方格填1;其余的方格填0(或不填)。也可化为标准与或式,再填入。,例:用卡诺图分别描述下列逻辑函数,A,BC,0,1,00,01,11,10,1,1,1,1,1,解:,A:当ABC=1(表示可以为0,也可以为1)时该与项为1,在卡诺图上对应四个方格(m4,m5,m6,m7)处填1。,:当ABC=10时该与项为1,在卡诺图上对应两个方格(m2,m6)处填1。,00,01,11,10,00,01,11,10,1,1,1,1,1,1,1,1,1,1,AB,CD,D:当ABCD=1时该与项为1,对应八个方格(m1、m3、m5、m7、m9、m11、m13、m15)处填1。,:当ABCD=001时该与项为1,对应两个方格(m2、m3)处填1。,:当ABCD=101时该与项为1,在卡诺图上对应两个方格(m10、m11)处填1。,解:,AD:当ABCD=11时该与项为1,对应四个方格(m9、m11、m13、m15)处填1。,某些最小项重复,只需填一次即可。,给出逻辑函数的最大项之积式标准或与式,将逻辑函数的最大项在卡诺图上相应的方格中填0(或不填);其余的方格填1。任何一个逻辑函数都等于其卡诺图上填1的那些最大项之积。,例:用卡诺图描述逻辑函数,解:,给出逻辑函数一般或与式,确定使每个或项为0的所有输入变量取值,并在卡诺图上对应方格填0;其余的方格填1。也可化为标准或与式,再填入。,例:用卡诺图分别描述逻辑函数,A,BC,0,1,00,01,11,10,0,0,0,0,1,0,1,1,解:,A:当ABC=0(表示可以为0,也可以为1)时该或项为0,在卡诺图上对应四个方格(m0,m1,m2,m3)处填0。,:当ABC=01时该与项为0,在卡诺图上对应两个方格(m1,m5)处填0。,3.用卡诺图化简逻辑函数,卡诺图化简步骤:1)将函数化为最小项之和的形式;2)画出表示该逻辑函数的卡诺图;3)找出可以合并的最小项;4)选取化简后的乘积项,选择原则为:a)应包含该逻辑函数的全部最小项。b)所选择的可合并的最小项矩形组数目应尽可能少。c)所选择的可合并的最小项矩形组应包含尽可能多的最小项。,例2-11用卡诺图法化简函数解:,2.6.3奎恩麦克拉斯基化简法,由奎恩和麦克拉斯基提出用.列表方式进行化简。特点:有一定的规则和步骤,适用于编制计算机辅助化简程序。克服了前面两种方法的局限性。Q-M法的基本原理仍然是通过合并相邻最小项并消去多余因子而求得逻辑函数的最小与或式。大家自学,2.7具有无关项的逻辑函数的卡诺图化简,无关项:约束项和任意项统称为无关项。约束:指具体的逻辑问题对输入变量取值所加的限制。约束项:不允许出现
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 1.2.2 研究有机化合物的一般方法 教学设计 (1) 2023-2024学年高二下学期化学人教版(2019)选择性必修3
- 第2课《说和做-记闻一多先生言行片段》说课稿2024-2025学年统编版语文七年级下册
- 灌肠操作护士考试题及答案
- 辐射健康考试题及答案大全
- 分娩镇痛考试题目及答案
- AI在施工团队协作与任务分配中的智能决策研究
- 2025家居装修材料授权代理购销合同
- 社区污水处理站工程风险评估报告
- 井控基础试题及答案
- 综合物流铁路专用线建设项目技术方案
- 上海戏剧学院辅导员考试题库
- 安徽省花凉亭灌区“十四五”续建配套与现代化改造工程环境影响报告书
- 铁路行李包裹运价表(铁路旅客运输规程)
- 2023浙江金华市义乌市机关事业单位编外聘用人员招聘101人笔试备考题库及答案解析
- 医院护理部人员绩效考核标准及评分细则
- 师范大学新生服务手册
- 第九组 生态监测与评价
- 西方国家的宪法制度课件
- 2021年色达县林业系统事业单位招聘考试《林业基础知识》笔试试题及答案解析
- 食品销售流程图
- 国家职业技能标准 (2021年版) 燃气供应服务员
评论
0/150
提交评论