




已阅读5页,还剩48页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
博弈模型与竞争策略,由于寡头垄断企业在作决策时,必须考虑竞争对手的可能反应。需要用博弈论来扩展我们对厂商的决策分析。基本假设:竞争者都是理性的,他们都各自追求利润最大化。,博弈模型与竞争策略,例:一元纸币用一种特别的方式拍卖。出价最高的竞拍者用他所报的价并得到这元钱,出价次高的竞拍者也要交出他所报的价,但什么也得不到竞拍时每次报价增加0.1元,如果你参加了竞拍,你会为这一元钱出价多少?,博弈模型与竞争策略,注意点:是一种什么样的博弈类型?博弈规则?和策略?你的竞争对手和你一样的聪明你的竞争对手对你的决策可能的响应均衡的含义,博弈模型与竞争策略,两个寡头垄断厂商之间经济博弈类型1.合作与非合作博弈厂商之间的经济博弈可以是合作的也可以是非合作的。如果谈定有约束力的合同就是合作的;如果不可能谈定并执行有约束力的合同就是非合作的。我们主要关心的是非合作博弈。这里最重要的是理解你的对手的观点,并推断他或她对你的行为大概做如何反应。,博弈模型与竞争策略,2.同时博弈与序列博弈博弈双方是同时采取行动,决定价格或产量,还是依次采取行动。3.一次性博弈与重复博弈4.产量作为决策变量与价格作为决策变量5.同一产品与变异产品,博弈模型与竞争策略,两个寡头垄断厂商之间经济博弈策略在博弈中博弈者采取的策略大体上可以有三种1.上策(dominantStrategy)不管对手做什么,对博弈方都是最优的策略如厂商A和B相互竞争销售产品,正在决定是否采取广告计划,博弈模型与竞争策略,各单元的第一个数是A的得益,第二个数是B的得益。考虑A,不管B怎么决定,都是做广告最好。考虑B,也是同样的。结论:两厂都做广告,这是上策。,厂商B,做广告,不做广告,做广告,不做广告,厂商A,10,5,15,0,6,8,10,2,博弈模型与竞争策略,但不是每个博弈方都有上策的,现在A没有上策。A把自己放在B的位置B有一个上策,不管A怎样做,B做广告。若B做广告,A自己也应当做广告。,厂商B,做广告,不做广告,做广告,不做广告,厂商A,10,5,15,0,6,8,20,2,博弈模型与竞争策略,但在许多博弈决策中,一个或多个博弈方没有上策,这就需要一个更加一般的均衡,即纳什均衡。纳什均衡是给定对手的行为,博弈方做它所能做的最好的。古尔诺模型的均衡是纳什均衡而上策均衡是不管对手行为,我所做的是我所能做的最好的。,博弈模型与竞争策略,上策均衡是纳什均衡的特例。由于厂商选择了可能的最佳选择,没有改变的冲动,因此是一个稳定的均衡。上例是一个纳什均衡,但也不是所有的博弈都存在一个纳什均衡,有的没有纳什均衡,有的有多个纳什均衡。,博弈模型与竞争策略,例如:有两个公司要在同一个地方投资超市或旅馆,他们的得益矩阵为:一个投资超市,一个投资旅馆,各赚一千万,同时投资超市或旅馆,各亏五百万,他们之间不能串通,那么应当怎样决策呢?,厂商B,超市,旅馆,超市,旅馆,厂商A,-5,-5,10,10,10,10,-5,-5,博弈模型与竞争策略,2.最小得益最大化策略(MaxminStrategy)博弈的策略不仅取决于自己的理性,而且取决于对手的理性。如某电力局在考虑要不要在江边建一座火力发电站,港务局在考虑要不要在江边扩建一个煤码头。他们的得益矩阵为:,博弈模型与竞争策略,电力局建电厂是上策。港务局应当可以期望电力局建电厂,因此也选择扩建。这是纳什均衡。但万一电力局不理性,选择不建厂,港务局的损失太大了。如你处在港务局的地位,一个谨慎的做法是什么呢?就是最小得益最大化策略。,电力局,不建电厂,建电厂,不扩建,扩建,港务局,1,0,1,0.5,-100,0,2,1,博弈模型与竞争策略,最小得益最大化是一个保守的策略。它不是利润最大化,是保证得到1而不会损失100。电力局选择建厂,也是得益最小最大化策略,如果港务局能确信电力局采取最小得益最大化策略,港务局就会采用扩建的策略。,博弈模型与竞争策略,在著名的囚徒困境的矩阵中,坦白对各囚徒来说是上策,同时也是最小得益最大化决策。坦白对各囚徒是理性的,尽管对这两个囚徒来说,理想的结果是不坦白。,囚徒B,坦白,不坦白,坦白,不坦白,囚徒A,-5,-5,-1,-10,-10,-1,-2,-2,博弈模型与竞争策略,3.混合策略在有些博弈中,不存在所谓纯策略的纳什均衡。在任一个纯策略组合下,都有一个博弈方可单方改变策略而得到更好的得益。但有一个混合策略,就是博弈方根据一组选定的概率,在可能的行为中随机选择的策略。例如博弈硬币的正反面,,博弈模型与竞争策略,如果两个硬币的面一致(都是正面或都是反面)博弈A方赢,如果一正一反,B方赢。你的策略最好是1/2选正面,1/2选反面的随机策略。,B方,正面,反面,正面,反面,A方,1,-1,-1,1,-1,1,1,-1,博弈模型与竞争策略,警卫与窃贼的博弈警卫睡觉,小偷去偷,小偷得益B,警卫被处分-D。警卫不睡,小偷去偷,小偷被抓受惩处-P,警卫不失不得。警卫睡觉,小偷不偷,小偷不失不得,警卫得到休闲R.警卫不睡,小偷不偷,都不得不失。,警卫,睡觉,不睡觉,偷,不偷,窃贼,B,-D,-P,0,0,R,0,0,博弈模型与竞争策略,混合博弈的两个原则一不能让对方知道或猜到自己的选择,因此必须在决策时采取随机决策;二选择每种策略的概率要恰好使对方无机可乘,对方无法通过有针对性的倾向于某种策略而得益,博弈模型与竞争策略,警卫是不是睡觉决定于小偷偷不偷的概率,而小偷偷不偷的概率在于小偷猜警卫睡不睡觉小偷一定来偷,警卫一定不睡觉;小偷一定不来偷,警卫一定睡觉。警卫的得益与小偷偷不偷的概率有关,博弈模型与竞争策略,若小偷来偷的概率为P偷警卫的得益为:R(1-P偷)+(-D)P偷小偷认为警卫不会愿意得益为负,最多为零。即R/D=P偷/(1-P偷)小偷偷不偷的概率等于R与D的比率,0,1,小偷偷的概率,警卫睡觉的期望得益,R,D,P偷,博弈模型与竞争策略,同样的道理警卫偷懒的概率(睡觉)P睡决定了小偷的得益为:(-P)(1-P睡)+(V)P睡警卫也认为小偷不会愿意得益为负,最多为零。即V/P=(1-P睡)/P睡警卫偷不偷懒的概率取决于V与P的比率有趣的激励悖论,0,1,警卫偷懒的概率,小偷的期望得益,P睡,P,V,案例分析,1同时一次性决策两个寡头垄断企业生产相同产品,同时对产量进行一次性决策目标是各自利润最大化。面临的市场需求P=30-QQ=Q1+Q2MC1=MC2=0,案例分析,这两个寡头企业按古尔诺模型决策,或卡特尔模型决策。得益矩阵如右所示。古尔诺均衡是上策均衡,同时也是纳什均衡。,企业2,7.5,10,7.5,10,企业1,112.5,112.5,93.75,125,125,93.75,100,100,案例分析,如果按卡特尔模型决策,又有欺骗行为,再加上古尔诺模型,结果又如何?,企业2,7.5,10,11.25,7.5,10,11.25,企业1,112.5,112.5,93.75,125,84.38,126.6,125,93.75,100,100,87.5,98.44,126.6,84.38,98.44,87.5,84.38,84.38,案例分析,同时也考虑到按完全竞争决策,结果又怎样?,企业2,7.5,10,11.5,15,7.5,10,11.5,15,企业1,112.5,112.5,93.75,125,84.38,126.6,56.25,112.5,125,93.75,100,100,87.5,98.44,50,75,126.6,83.38,98.44,87.5,84.38,84.38,42.19,56.25,112.5,56.25,75,50,56.25,42.19,0,0,案例分析,两个寡头垄断企业在一个性开发地区要同时开发超市和旅馆。得益矩阵如右所示。你有什么对策?存在纳什均衡吗?,-50,-80,900,500,200,800,60,80,企业2,旅馆,超市,旅馆,超市,企业1,案例分析,如果这两个经营者都是小心谨慎的决策者,都按最小得益最大化行事结果是什么?如果他们采取合作的态度结果又是什么?从这个合作中得到的最大好处是多少?一方要给另一方多大好处才能说服另一方采取合作态度?,-50,-80,900,500,200,800,60,80,H,S,H,S,企业2,企业1,案例分析,2.重复博弈对于那个著名的囚徒两难决策,在他们一生中也许就只有一次。但对于多数企业来说,要设置产量,决定价格,是一次又一次。这会有什么不同呢?,-5,-5,-1,-10,-10,-1,-2,-2,不坦白坦白,不坦白,坦白,囚徒B,囚徒A,案例分析,我们再来回顾一下古尔诺均衡。如果仅仅时一次性决策,采取的是上策策略选择Q10,10.,企业2,7.5,10,7.5,10,企业1,112.5,112.5,93.75,125,125,93.75,100,100,案例分析,如果你和你的竞争对手要博弈三个回合,希望三次的总利润最大化。那么你第一回合的选择是什么?第二回合呢?第三回合呢?如果是连续博弈十次呢?如果是无限次博弈呢?策略是以牙还牙,案例分析,不能指望企业永远生存下去,博弈的重复是有限次的。那么最后一次我应当是怎样的决策呢?如果对手是理性的,也估计到着一点,那么倒数地二次我应当怎样定价呢?如此类推,理性的结果是什么?而我又不知道哪一次是最后一次,又应当采用什么策略呢?,案例分析,3.序列博弈我们前面讨论的博弈都是同时采取行动,但有许多例子是先后采取行动,是序列博弈。比如两个企业中,企业1可以先决定产量,他们的市场需求函数P=30-QQ1+Q2=QMC1=MC2=0,案例分析,企业1考虑企业2会如何反应?企业2会按古尔诺的反应曲线行事。Q2=15-Q1/2企业1的收益:TR1=Q1P=Q130-(Q1+Q2)=30Q1-(Q1)2-Q1(15-Q1/2)=15Q1-(Q1)2/2MR1=15-Q1,案例分析,MC1=0Q1=15Q2=7.5P1=112.5P2=56.25先采取行动的占优势。而如果企业1先决定价格,结果?同时决定价格,则各自的需求函数应当是:Q1=20-P1+P2Q2=20-P2+P1,案例分析,假定:MC1=MC2=0利润函数:P1=Q1P1-TC1,P2=Q2P2-TC2,反应函数:P1=(20+P2)/2P2=(20+P1)/2解:P1=P2=20P1=P2=400,案例分析,企业1先决定价格,企业1考虑企业2的反应曲线P1=P1*20-P1+(20+P1)/2=30P1-P21/2P1=30P2=25Q1=15Q2=25P1=450P2=625价格战,先行动的吃亏,案例分析,4.威胁博弈两个企业有类似的产品,但企业1在产品的质量和信誉上有明显的优势。企业1是品牌机,企业2是组装机如果他们的得益矩阵如右所示,那么企业1对企业2有威慑力吗?,企业2,高价位,低价位,高价位,低价位,100,80,80,100,20,0,10,20,企业1,案例分析,如果企业1是发动机生产厂,可生产汽油机或柴油机;企业2是汽车厂,可生产汽油车或柴油车。他们的得益矩阵如右所示。企业1对企业2有威慑力吗?,企业2,汽油车,柴油车,汽油机,柴油机,3,6,3,0,1,1,8,3,企业1,案例分析,如果企业1采取断然措施,关闭并拆除汽油机的生产线,把自己逼到只生产柴油机。他们的得益矩阵如右所示。企业1对企业2能有威慑力吗?,企业2,汽油车,柴油车,汽油机,柴油机,0,1,0,0,1,1,8,3,企业1,案例分析,在博弈中,有点疯狂的一方有优势。狭路相逢,勇者胜但也是冒险的。如果企业2能很容易的找到一家生产汽油机的合作工厂,企业1就十分不利了。斗鸡博弈就是一个戏剧化的例子。,企业2,汽油车,柴油车,汽油机,柴油机,0,5,0,0,1,5,8,3,企业1,案例分析,又如:在一个开发地区,有两家公司都想在一个新开发地区建立一个大型综合商厦,该地区只能支持一家综合商厦,得益矩阵如右:先发制人,企业2,开办,不开办,开办,不开办,-10,-10,20,0,0,20,0,0,企业1,案例分析,在许多情况下,厂商有时能采取阻止潜在竞争者进入的策略。使潜在竞争者确信进入无利可图。如市场需求函数P=100-Q/2现有企业的MCI=40,潜在竞争者有同样的MCP=40但必须支付沉没成本500,案例分析,如果你是现有企业,你打算怎样做?P=70?or49?潜在的竞争者是怎么想的呢?,潜在竞争者,进入,不进,高价,低价,现有企业,900,400,1800,0,459,-41,918,0,案例分析,如果沉没成本是400,你打算怎样做呢?P=70?还是P=47?潜在的竞争者在怎样想?理性可能被打破。核威慑,潜在竞争者,进入,不进,高价,低价,现有企业,900,500,1800,0,371,-29,742,0,案例分析,5.讨价还价策略目标:各自的得益最大化有两个人在讨价还价100元怎么分?以元为单位。A提出一个分法,如果B接收,讨价还价结束。B如果不接受,总数减到90元,由B提出方案,A可以接受或不接受。,案例分析,如果你是A,若要两轮结束讨价还价,你第一轮的方案是什么?,案例
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 20833.2-2025旋转电机绕组绝缘第2部分:定子绕组绝缘在线局部放电测量
- 浙江省杭州五校2026届高二化学第一学期期末教学质量检测试题含答案
- 汉字的演变课件
- 汉字思维上课课件
- 2024-2025学年广东省云浮市云城区人教版四年级下册期末考试数学试卷(含答案)
- 《世说新语》的国学密码解析知到智慧树答案
- 餐饮行业OO模式发展趋势分析
- 2025校园文化墙内容更新合同
- 2025年密封件项目规划申请报告
- 医院品质管理FOCUS-PDCA品管圈获奖案例-降低手术室腹腔镜器械分配缺陷率成果汇报课件
- 2025年福建中闽能源股份有限公司招聘笔试参考题库含答案解析
- 科研项目管理质量承诺
- 北师大版小学数学教材教法培训
- 物业小区安全生产管理制度
- 医院培训课件:《主动脉夹层的护理》
- 2024版《皮肌炎的临床表现》课件
- 2024年广东湛江廉江市部分机关(镇街道)单位招聘政府雇员11人易考易错模拟试题(共500题)试卷后附参考答案
- 醉里乾坤大壶中日月长-初中语文九年级第六单元名著导读《水浒传》整本书阅读精读研讨课 公开课一等奖创新教学设计
- 第一章 有理数 大单元教学设计-2024-2025学年七年级数学上册(人教版2024)
- AQ 2029-2010 金属非金属地下矿山主排水系统安全检验规范(正式版)
- JGJ153-2016 体育场馆照明设计及检测标准
评论
0/150
提交评论