




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、空间直线的一般方程,二、空间直线的对称式方程与参数方程,三、两直线的夹角,四、直线与平面的夹角,五、杂例,7.8空间直线及其方程,上页,下页,铃,结束,返回,首页,分析:,点M在直线L上点M同时在这两个平面上,点M的坐标同时满足这两个平面的方程.,一、空间直线的一般方程,空间直线可以看作是两个平面的交线.,设直线L是平面1和2的交线,平面的方程分别为A1x+B1y+C1z+D1=0和A2x+B2y+C2z+D2=0,这就是空间直线的一般方程.,首页,二、空间直线的对称式方程与参数方程,如果一个非零向量平行于一条已知直线,这个向量就叫做这条直线的方向向量.,方向向量,直线上任一向量都平行于该直线的方向向量.,当直线L上一点M0(x0,y0,x0)和它的一方向向量s=(m,n,p)为已知时,直线L的位置就完全确定了.,确定直线的条件,下页,直线的对称式方程,求通过点M0(x0,y0,x0),方向向量为s=(m,n,p)的直线的方程.,(x-x0,y-y0,z-z0)/s,从而有,这就是直线的方程,叫做直线的对称式方程.,直线的任一方向向量s的坐标m、n、p叫做这直线的一组方向数.向量s的方向余弦叫做该直线的方向余弦.,则从M0到M的向量平行于方向向量:,设M(x,y,z)为直线上的任一点,下页,注,通过点M0(x0,y0,x0),方向向量为s=(m,n,p)的直线方程:,直线的参数方程,此方程组就是直线的参数方程.,下页,提示:,先求直线上的一点,再求这直线的方向向量s.,提示:,提示:,提示:,于是(1,-2,0)是直线上的一点.,在直线的一般方程中令x=1,解,以平面x+y+z=-1和2x-y+3z=4的法线向量的向量积作为直线的方向向量s:,4i-j-3k.,s(i+j+k)(2i-j+3k),可得y=-2,z=0.,所给直线的对称式方程为,下页,例1,所给直线的参数方程为x14ty2tz3t,三、两直线的夹角,两直线的方向向量的夹角(通常指锐角)叫做两直线的夹角.,设直线L1和L2的方向向量分别为s1=(m1,n1,p1)和s2=(m2,n2,p2),那么L1和L2的夹角j满足,下页,方向向量分别为(m1,n1,p1)和(m2,n2,p2)的直线的夹角余弦:,例2,解,两直线的方向向量分别为,设两直线的夹角为j,则,(1,-4,1)和(2,-2,-1).,下页,两直线垂直与平行的条件,设有两直线,L1L2m1m2+n1n2+p1p2=0;,则,首页,方向向量分别为(m1,n1,p1)和(m2,n2,p2)的直线的夹角余弦:,提示:,四、直线与平面的夹角,当直线与平面不垂直时,直线和它在平面上的投影直线的夹角j称为直线与平面的夹角,当直线与平面垂直时,规定直线与平面的夹角为90.,设直线的方向向量为s=(m,n,p),平面的法线向量为n=(A,B,C),则直线与平面的夹角j满足,下页,方向向量为(m,n,p)的直线与法线向量为(A,B,C)的平面的夹角j满足,直线与平面垂直和平行的条件,设直线L的方向向量为s=(m,n,p),平面P的法线向量为n=(A,B,C),则,L/PAm+Bn+Cp=0.,下页,例3求过点(1,-2,4)且与平面2x-3y+z-4=0垂直的直线的方程.,平面的法线向量(2,-3,1)可以作为所求直线的方向向量.由此可得所求直线的方程为,首页,解,设直线L的方向向量为s=(m,n,p),平面P的法线向量为n=(A,B,C),则,L/PAm+Bn+Cp=0.,平面x-4z=3和2x-y-5z=1的交线的方向向量就是所求直线的方向向量s.,五、杂例,例4求与两平面x-4z=3和2x-y-5z=1的交线平行且过点(-3,2,5)的直线的方程.,解,因为,所以,所求直线的方程为,下页,x=2+t,y=3+t,z=4+2t,代入平面方程中,得2(2+t)+(3+t)+(4+2t)-6=0.解上列方程,得t=-1.将t=-1代入直线的参数方程,得所求交点的坐标为x=1,y=2,z=2.,解,所给直线的参数方程为,下页,例5,解,下页,所求直线的方向向量为s(122)(212)(110),过已知点且与已知直线相垂直的平面的方程为,(x2)(y1)2(z2)0,即xy2z7,此平面与已知直线的交点为(122),提示:求出两直线的交点是关键而交点就是过已知点且与已知直线相垂直的平面与已知直线的交点,解,下页,所求直线的方向向量为s(122)(212)(110),过已知点且与已知直线相垂直的平面的方程为,(x2)(y1)2(z2)0,即xy2z7,此平面与已知直线的交点为(122),所求直线的方程为,分析:,因为A1、B1、C1与A2、B2、C2不成比例,所以对于任何一个l值,上述方程的系数不全为零,从而它表示一个平面.,分析:,对于不同的l值,所对应的平面也不同,而且这些平面都通过直线L,即这个方程表示通过直线L的一族平面.,分析:,另一方面,任何通过直线L的平面也一定包含在上述通过L的平面族中.,平面束,考虑三元一次方程:,A1x+B1y+C1z+D1+l(A2x+B2y+C2z+D2)=0,即(A1+lA2)x+(B1+lB2)y+(C1+lC1)z+D1+lD2=0,其中l为任意常数.,下页,上述方程表示通过定直线L的所有平面的全体,称为平面束.,下页,平面束,考虑三元一次方程:,A1x+B1y+C1z+D1+l(A2x+B2y+C2z+D2)=0,即(A1+lA2)x+(B1+lB2)y+(C1+lC1)z+D1+lD2=0,其中l为任意常数.,提示:,我们要在通过已知直线的平面束中找出与已知平面相垂直的平面,此平面与已知平面的交线就是所求的投影直线.,提示:,这是平面束的法线向量(1+l,1-l,-1+l)与已知平面的法线向量(1,1,1)的数量积.,(x+y-z-1)+l(x-y+z+1)=0,即(1+l)x+(1-l)y+(-1+l)z+(-1+l)=0.,为了求得与已知平面x+y+z=0垂直的平面,令,(1+l)1+(1-l)1+(-1+l)1=0,解,设通过已知直线的平面束的方程为,下页,即y-z-1=0.,2y-2z-2=0,于是得到与已知平面垂直的平面的方程为,解得l=-1.,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流公司实习合同范本
- 门店物品转让合同范本
- 机械租领合同范本
- 建房出租合同范本
- 美陈设计合同范本
- 工业车辆销售合同范本
- 后勤工作思路怎么写2025(5篇)
- 生态保护修复资金申请关键因素评估报告(2025版)
- 2025年高中字音字形题目及答案
- 古筝演奏题目及答案
- 《住房租赁条例》培训解读课件
- 2025版医疗纠纷委托代理行政复议委托书
- 三角形的概念 课件 2025-2026学年人教版(2024)数学八年级上册
- 神经根型颈椎病中医循证实践指南-公示稿
- 2025年保密观知识竞赛试题及答案
- 2025年秋季第一学期开学典礼校长致辞:在历史的坐标上接好时代的接力棒(1945→2025→未来:我们的责任接力)
- 中国邮政集团工作人员招聘考试笔试试题(含答案)
- 2025年高考语文全国一卷试题真题及答案详解(精校打印)
- ACLS-PC-SA课前自我测试试题及答案
- OTN技术概述PPT课件
- 农业气象观测规范-土壤水分分册
评论
0/150
提交评论