已阅读5页,还剩40页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IntroductionofCurrentDeepLearningSoftwarePackages,ThreePopularones,1.Caffe/2.Theano/pypi/Theano3.TensorFlow/Thesewebsitesprovideinformationabouthowtoinstallandrunrelateddeeplearningsoftware.,1.Caffe,1.Overview:Caffe(ConvolutionalArchitectureForFeatureExtraction)CreatedbyYangqingJia(贾扬清),UCBerkeley.WritteninC+,hasPythonandMATLABinterface.2.Githubpage:,4.Installmethod(CUDA+Caffe):Ouxinyu.github.io/Blogs/2014723001.html,AnatomyofCaffe,Blob:StoresdataandderivativesLayer:TransformsBottomblobstotopblobsNet:Manylayers;computesgradientsviaforward/backward,Blob,Layer,Net,Blob,ABlobisawrapperovertheactualdatabeingprocessedandpassedalongbyCaffe,andalsounderthehoodprovidessynchronizationcapabilitybetweentheCPUandtheGPU.,Theconventionalblobdimensionsforbatchesofimagedataare(numberN)x(channelK)x(heightH)x(widthW).,Foraconvolutionlayerwith96filtersof11x11spatialdimensionand3inputstheblobis96x3x11x11.Foraninnerproduct/fully-connectedlayerwith1000outputchannelsand1024inputchannelstheparameterblobis1000 x1024.,Layer,Thelayeristheessenceofamodelandthefundamentalunitofcomputation.Layersconvolvefilters,pool,takeinnerproducts,applynonlinearitieslikerectified-linearandsigmoidandotherelement-wisetransformations,normalize,loaddata,andcomputelosseslikesoftmaxandhinge.,Case:ConvolutionLayer,Net,Thenetjointlydefinesafunctionanditsgradientbycompositionandauto-differentiation.Thecompositionofeverylayersoutputcomputesthefunctiontodoagiventask,andthecompositionofeverylayersbackwardcomputesthegradientfromthelosstolearnthetask.,name:LogReglayername:mnisttype:Datatop:datatop:labeldata_paramsource:input_leveldbbatch_size:64layername:iptype:InnerProductbottom:datatop:ipinner_product_paramnum_output:2layername:losstype:SoftmaxWithLossbottom:ipbottom:labeltop:loss,HowtouseCaffe?,Just4steps!1.Convertdata(runascript)2.Definenet(editprototxt)3.Definesolver(editprototxt)4.Train(withpretrainedweights)(runascript)TakeCifar10imageclassificationforexample.,DataLayerreadingfromLMDBistheeasiest,createLMDBusingconvert_imagesetNeedtextfilewhereeachlineis“path/to/image.jpeglabel”(useimageDataLayerread)CreateHDF5fileyourselfusingh5py(useHDF5Layerread),Step1:ConvertDataforCaffe,ConvertDataonCIFAR10,Step2:DefineNet(cifar10_quick_train_totxt),Layername,Blobsname,Learningrateofweight,Learningrateofbias,Inputimagenumperiteration,Trainingimagedata,Datatype,Blobsname,Numberofoutputclass,Outputaccuracyduringtest,Outputlossduringtrain,Ifyoufinetunesomepre-trainmodel,youcansetlr_mul=0,Step2:DefineNet(cifar10_quick_train_totxt),VisualizetheDefinedNetwork,http:/ethereon.github.io/netscope/#/editor,Step3:DefineSolver(cifar10_quick_totxt),#reducethelearningrateafter8epochs(4000iters)byafactorof10#Thetrain/testnetprotocolbufferdefinitionnet:examples/cifar10/cifar10_quick_train_totxt“#test_iterspecifieshowmanyforwardpassesthetestshouldcarryout.#InthecaseofMNIST,wehavetestbatchsize100and100testiterations,#coveringthefull10,000testingimages.test_iter:100#Carryouttestingevery500trainingiterations.test_interval:500#Thebaselearningrate,momentumandtheweightdecayofthenetwork.base_lr:0.001momentum:0.9weight_decay:0.004#Thelearningratepolicylr_policy:fixed“#Displayevery100iterationsdisplay:100#Themaximumnumberofiterationsmax_iter:4000#snapshotintermediateresultssnapshot:4000snapshot_prefix:examples/cifar10/cifar10_quick“#solvermode:CPUorGPUsolver_mode:GPU,DefinedNetfile,Keyparameters,Importantparameters,Step4:Train,Writeashellfile(train_quick.sh):,Thenenjoyacupofcaffe,ModelZoo(Pre-trainedModel+Finetune),Wecanfinetunethesemodelsordofeatureextractionbasedonthesemodels,Sometricks/skillsabouttrainingCaffe,1NeuralNetworks:tricksofthetrade,1.DataAugmentationtoenlargetrainingsamples2.ImagePre-Processing3.NetworkInitializations4.DuringTraining5.ActivationFunctions6.Regularizationsmoredetailscanreferto1,2,2,DataAugmentation,DataAugmentation,Veryusefulforfaceandcarrecognition!,DataAugmentation,Togetridofocclusionandscalechange,likevisualtracking,DataAugmentation,DataAugmentation,ImagePre-Processing,Step1:subtractthedataset-meanvalueineachchannel,Step2:swapchannelsfromRGBtoBGR,Step3:moveimagechannelstooutermostdimension,Step4:rescalefrom0,1to0,255,NetworkInitializations,DuringTraining,helpalleviateoverfittingduringtraininginCaffe,1Srivastava,Nitish,etal.Dropout:asimplewaytopreventneuralnetworksfromoverfitting.JournalofMachineLearningResearch15.1(2014):1929-1958.2S.IoffeandC.Szegedy.Batchnormalization:Acceleratingdeepnetworktrainingbyreducinginternalcovariateshift.arXivpreprintarXiv:1502.03167,2015,Overfitting,ProsandConsofCaffe,ApracticalexampleofCaffe,ObjectdetectionRCNN/Fast-RCNN/Faster-RCNNCaffe+MATLAB,lr=0.1xbaselearningrate,lr=baselearningrate,2.Theano,1.Overview:APythonlibrarythatallowstodefine,optimizeandevaluatemathematicalexpression.FromYoshuaBengiosgroupatUniversityofMontreal.Embracingcomputationgraphs,symboliccomputation.High-levelwrappers:Keras,Lasagne.2.Github:,ProsandConsofTheano,3.TensorFlow,1.Overview:VerysimilartoTheano-allaboutcomputationgraphs.Easyvisualizations(TensorBoard).Multi-GPUandmulti-nodetraining.2.Tutorial:http:/terryum.io/ml_practice/2016/05/28/TFIntroSlides/,LoaddataDefinetheNNstructureSetoptimizationparametersRun!,BasicFlowofTensorFlow,1.Loaddata,1.Loaddata,2.DefinetheNNstructure,3.Setoptimizationparameters,4.RUN,TheProsandConsofTensorFlow,Ove
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肺炎常见症状解析及护理措施培训
- 系统性红斑狼疮症状解析及护理手册
- 腹部核心训练讲座
- 中风常见症状及护理要点分享
- 割草机器人行业市场前景及投资研究报告:智领全球竞逐蓝海
- 转让游乐设备合同范本
- 个人货款担保协议书
- 占地建房补偿协议书
- 桶装水代销合同协议
- 设备专利合作合同范本
- 2025年榆林神木市信息产业发展集团招聘备考题库(35人)附答案详解(综合题)
- 大学生人际交往论文
- 2025年《电力调度操作》知识考试题库及答案解析
- 探问人生目标教学课件 -2025-2026学年统编版道德与法治七年级上册
- 2025年新版工会知识竞赛试题(附答案)
- 水电站设备运行安全操作规程手册
- 年产6万吨无水氟化氢项目可行性研究报告
- 机械新员工培训
- 软装设计培训课件
- 病媒生物防治培训课件
- 税收执法程序课件
评论
0/150
提交评论