离散型随机变量的均值_第1页
离散型随机变量的均值_第2页
离散型随机变量的均值_第3页
离散型随机变量的均值_第4页
离散型随机变量的均值_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

离散型随机变量的均值,一、复习回顾,1、离散型随机变量的分布列,2、离散型随机变量分布列的性质:,(1)pi0,i1,2,;(2)p1p2pi1,复习引入,对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.,1、某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则所得的平均环数是多少?,把环数看成随机变量的概率分布列:,权数,加权平均,二、互动探索,高二(36)班有45人,本学期期中考试数学平均分为80分,高二(35)班有55人,平均分为90分,求两班的数学平均分。,三、建构定义初步理解,提问2:能否用各班的分数乘以人数所占的比例求均值?,提问1:能否利用两个平均数相加除以二求平均数?如果不能,应该怎么做?,按3:2:1的比例混合,混合糖果中每一粒糖果的质量都相等,问题3:作为顾客,买了1kg糖果要付23元,而顾客买的这1kg糖果的真实价格一定是23元吗?,问题1:混合后,每1kg糖的平均价格为多少?,问题2:若在混合糖果中任取一粒糖果,用随机变量X表示这颗糖果的单价(元/kg),写出X的分布列。,平均价格为,一、离散型随机变量取值的平均值,数学期望,一般地,若离散型随机变量X的概率分布为:,则称,为随机变量X的均值或数学期望。它反映了离散型随机变量取值的平均水平。,概括定义,设YaXb,其中a,b为常数,则Y也是随机变量(1)Y的分布列是什么?(2)EY=?,思考:,一、离散型随机变量取值的平均值,数学期望,二、数学期望的性质,三、基础训练,1、随机变量的分布列是,(1)则E=.,2、随机变量的分布列是,2.4,(2)若=2+1,则E=.,5.8,E=7.5,则a=b=.,0.4,0.1,例1.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分已知某运动员罚球命中的概率为0.7,则他罚球1次的得分X的均值是多少?,一般地,如果随机变量X服从两点分布,,则,四、例题讲解,小结:,例2.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分已知某运动员罚球命中的概率为0.7,他连续罚球3次;(1)求他得到的分数X的分布列;(2)求X的期望。,解:,(1)XB(3,0.7),(2),一般地,如果随机变量X服从二项分布,即XB(n,p),则,小结:,基础训练:,一个袋子里装有大小相同的3个红球和2个黄球,从中有放回地取5次,则取到红球次数的数学期望是.,3,问题4:离散型随机变量,的期望与,四、深入理解探究性质,的算术平均数相同吗?,可能取值,问题5:随机变量的期望与可能取值的算术平均数何时相等?,例1:随机抛掷一个骰子,求所得骰子的点数的期望。,例3、一次单元测验由20个选择题构成,每个选择题有4个选项,其中仅有一个选项是正确的。每题选对得5分,不选或选错不得分,满分100分。学生甲选对任意一题的概率为0.9,学生乙则在测验中对每题都从各选项中随机地选出一个,分别求学生甲和学生乙在这次测验中的成绩的均值。,题型三、二项分布的均值(期望),历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9.,例3:根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:,求:工期延误天数Y的均值。,解:由已知条件和概率的加法公式有:,.,所以,的分布列为:,于是,故工期延误天数Y的值为3,.,归纳求离散型随机变量期望的步骤:,确定离散型随机变量可能的取值。,写

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论