2019年中考数学模拟试卷及答案解析13-13_第1页
2019年中考数学模拟试卷及答案解析13-13_第2页
2019年中考数学模拟试卷及答案解析13-13_第3页
2019年中考数学模拟试卷及答案解析13-13_第4页
2019年中考数学模拟试卷及答案解析13-13_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2019年中考数学模拟试卷一、选择题(本大题共8小题,每小题3分,共24分)1(3.00分)的相反数是()ABC2D22(3.00分)下列运算正确的是()Am6m2=m3B3m22m2=m2C(3m2)3=9m6Dm2m2=m23(3.00分)下列图形中,既是中心对称图形又是轴对称图形的是()ABCD4(3.00分)如图,直线l4l1,若1=124,2=88,则3的度数()A26B36C46D565(3.00分)如图是由6个大小相同的小正方体组成的几何体,它的主视图是()ABCD6(3.00分)如图,ABCD的对角线AC与BD相交于点O,ABAC,若AB=4,AC=6,则BD的长是()A8B9C10D117(3.00分)如图,在RtABC中,C=90,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线ACCBBA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()ABCD8(3.00分)如图,抛物线y=ax2+bx+c(a0)的对称轴为直线x=2,与x轴的一个交点在(3,0)和(4,0)之间,其部分图象如图所示则下列结论:4ab=0;c0;3a+c0;4a2bat2+bt(t为实数);点(,y1),(,y2),(,y3)是该抛物线上的点,则y1y2y3,正确的个数有()A4个B3个C2个D1个二、解答题(本大题共6小题,每小题3分,共18分)9(3.00分)中国的领水面积约为370 000km2,将数370 000用科学记数法表示为 10(3.00分)若关于x的一元二次方程kx22x+1=0有实数根,则k的取值范围是 11(3.00分)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:步数(万步)1.11.21.31.41.5天数375123在每天所走的步数这组数据中,众数和中位数分别是 12(3.00分)如图,将直线y=x沿y轴向下平移后的直线恰好经过点A(2,4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为 13(3.00分)如图,已知等边ABC的边长为6,以AB为直径的O与边AC、BC分别交于D、E两点,则劣弧的长为 14(3.00分)如图,用同样大小的黑色棋子按如图所示的规律摆放:则第个图案有 个黑色棋子三、解答题(本大题共10小题,共78分)15(5.00分)计算:|+(1)0+2sin452cos30+()116(5.00分)解不等式组,并判断分式方程的解是不是该不等式组的解?17(6.00分)如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68试根据以上数据求出潜艇C离开海平面的下潜深度(结果保留整数参考数据:sin680.9,cos680.4,tan682.5,1.7)18(6.00分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?19(8.00分)如图,在四边形ABCD中,BD为一条对角线,ADBC,AD=2BC,ABD=90,E为AD的中点,连接BE(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分BAD,BC=1,求AC的长20(8.00分)直线y=kx+b与反比例函数y=(x0)的图象分别交于点 A(m,3)和点B(6,n),与坐标轴分别交于点C和点D(1)求直线AB的解析式;(2)若点P是x轴上一动点,当COD与ADP相似时,求点P的坐标21(8.00分)已知:如图,MN为O的直径,ME是O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分DMN求证:(1)DE是O的切线;(2)ME2=MDMN22(10.00分)校园广播主持人培训班开展比赛活动,分为A、B、C、D四个等级,对应的成绩分别是9分、8分、7分、6分,根据如图不完整的统计图解答下列问题:(1)补全下面两个统计图(不写过程);(2)求该班学生比赛的平均成绩;(3)现准备从等级A的4人(两男两女)中随机抽取两名主持人,请利用列表或画树状图的方法,求恰好抽到一男一女学生的概率?23(10.00分)如图,在ABC中,ACB=90,CD是中线,AC=BC,一个以点D为顶点的45角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在EDF绕点D旋转的过程中:探究三条线段AB,CE,CF之间的数量关系,并说明理由;若CE=4,CF=2,求DN的长24(12.00分)如图,抛物线y=与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q(1)求点A、点B、点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(4)在点P的运动过程中,是否存在点Q,使BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1【考点】14:相反数【分析】根据相反数的概念解答即可【解答】解:的相反数是,添加一个负号即可故选:B【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是02【考点】35:合并同类项;47:幂的乘方与积的乘方;48:同底数幂的除法;49:单项式乘单项式【分析】分别利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则、单项式乘以单项式运算法则分别分析得出答案【解答】解:A、m6m2=m4,故此选项错误;B、3m22m2=m2,正确;C、(3m2)3=27m6,故此选项错误;D、m2m2=m3,故此选项错误;故选:B【点评】此题主要考查了同底数幂的除法运算以及合并同类项、积的乘方运算、单项式乘以单项式等知识,熟练应用相关运算法则是解题关键3【考点】P3:轴对称图形;R5:中心对称图形【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图,不是轴对称图形,故本选项错误;C、既是中心对称图又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误故选:C【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合4【考点】JA:平行线的性质【分析】先运用平行线的性质求出AOB的大小,然后借助平角的定义求出3即可解决问题【解答】解:如图,直线l4l1,1+AOB=180,而1=124,AOB=56,3=1802AOB=1808856=36,故选:B【点评】该题主要考查了平行线的性质及其应用问题;应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键5【考点】U2:简单组合体的三视图【分析】根据组合体的形状即可求出答案【解答】解:该主视图是:底层是3个正方形横放,右上角有一个正方形,故选:C【点评】本题考查三视图,解题的关键是根据组合体的形状进行判断,本题属于基础题型6【考点】KQ:勾股定理;L5:平行四边形的性质【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长【解答】解:ABCD的对角线AC与BD相交于点O,BO=DO,AO=CO,ABAC,AB=4,AC=6,BO=5,BD=2BO=10,故选:C【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单7【考点】E7:动点问题的函数图象【分析】这是分段函数:点P在AC边上时,y=x,它的图象是一次函数图象的一部分;点P在边BC上时,利用勾股定理求得y与x的函数关系式,根据关系式选择图象;点P在边AB上时,利用线段间的和差关系求得y与x的函数关系式,由关系式选择图象【解答】解:当点P在AC边上,即0x1时,y=x,它的图象是一次函数图象的一部分;点P在边BC上,即1x3时,根据勾股定理得 AP=,即y=,则其函数图象是y随x的增大而增大,且不是一次函数故B、C、D错误;点P在边AB上,即3x3+时,y=+3x=x+3+,其函数图象是直线的一部分综上所述,A选项符合题意故选:A【点评】本题考查了动点问题的函数图象此题涉及到了函数y=的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题8【考点】H3:二次函数的性质;H4:二次函数图象与系数的关系;H5:二次函数图象上点的坐标特征;HA:抛物线与x轴的交点【分析】根据抛物线的对称轴可判断,由抛物线与x轴的交点及抛物线的对称性可判断,由x=1时y0可判断,由x=2时函数取得最大值可判断,根据抛物线的开口向下且对称轴为直线x=2知图象上离对称轴水平距离越小函数值越大,可判断【解答】解:抛物线的对称轴为直线x=2,4ab=0,所以正确;与x轴的一个交点在(3,0)和(4,0)之间,由抛物线的对称性知,另一个交点在(1,0)和(0,0)之间,抛物线与y轴的交点在y轴的负半轴,即c0,故正确;由知,x=1时y0,且b=4a,即ab+c=a4a+c=3a+c0,所以正确;由函数图象知当x=2时,函数取得最大值,4a2b+cat2+bt+c,即4a2bat2+bt(t为实数),故错误;抛物线的开口向下,且对称轴为直线x=2,抛物线上离对称轴水平距离越小,函数值越大,y1y3y2,故错误;故选:B【点评】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定:=b24ac0时,抛物线与x轴有2个交点;=b24ac=0时,抛物线与x轴有1个交点;=b24ac0时,抛物线与x轴没有交点二、解答题(本大题共6小题,每小题3分,共18分)9【考点】1I:科学记数法表示较大的数【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数确定a10n(1|a|10,n为整数)中n的值,由于370 000有6位,所以可以确定n=61=5【解答】解:370 000=3.7105,故答案为:3.7105【点评】本题主要考查了科学记数法:熟记规律:(1)当|a|1时,n的值为a的整数位数减1;(2)当|a|1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0是解题的关键10【考点】AA:根的判别式【分析】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为0【解答】解:关于x的一元二次方程kx22x+1=0有实数根,=b24ac0,即:44k0,解得:k1,关于x的一元二次方程kx22x+1=0中k0,故答案为:k1且k0【点评】本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况11【考点】W4:中位数;W5:众数【分析】把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数,在这组数据中出现次数最多的是1.4,得到这组数据的众数【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数的平均数是(1.3+1.4)2=1.35,所以中位数是1.35,在这组数据中出现次数最多的是1.4,即众数是1.4故答案为:1.4;1.35【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求12【考点】F9:一次函数图象与几何变换;PA:轴对称最短路线问题【分析】先作点B关于x轴对称的点B,连接AB,交x轴于P,则点P即为所求,根据待定系数法求得平移后的直线为y=x2,进而得到点B的坐标以及点B的坐标,再根据待定系数法求得直线AB的解析式,即可得到点P的坐标【解答】解:如图所示,作点B关于x轴对称的点B,连接AB,交x轴于P,则点P即为所求,设直线y=x沿y轴向下平移后的直线解析式为y=x+a,把A(2,4)代入可得,a=2,平移后的直线为y=x2,令x=0,则y=2,即B(0,2)B(0,2),设直线AB的解析式为y=kx+b,把A(2,4),B(0,2)代入可得,解得,直线AB的解析式为y=3x+2,令y=0,则x=,P(,0),故答案为:(,0)【点评】本题属于最短路线问题,主要考查了一次函数图象与几何变换的运用,解决问题的关键是掌握:在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点13【考点】KK:等边三角形的性质;M5:圆周角定理;MN:弧长的计算【分析】连接OD、OE,先证明AOD、BOE是等边三角形,得出AOD=BOE=60,求出DOE=60,再由弧长公式即可得出答案【解答】解:连接OD、OE,如图所示:ABC是等边三角形,A=B=C=60,OA=OD,OB=OE,AOD、BOE是等边三角形,AOD=BOE=60,DOE=60,OA=AB=3,的长=;故答案为:【点评】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键14【考点】38:规律型:图形的变化类【分析】根据图中所给的黑色棋子的颗数,找出其中的规律,根据规律列出式子,即可求出答案【解答】解:第一个图需棋子1,第二个图需棋子1+3,第三个图需棋子1+32,第四个图需棋子1+33,第n个图需棋子1+3(n1)=3n2枚所以第个图形有19颗黑色棋子故答案为:19;【点评】此题考查了图形的变化类,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律三、解答题(本大题共10小题,共78分)15【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值【分析】直接利用绝对值的性质、特殊角的三角函数值、负指数幂的性质、零指数幂的性质分别化简得出答案【解答】解:原式=+1+22+2015=+1+2015=2016【点评】此题主要考查了实数运算,正确化简各数是解题关键16【考点】B2:分式方程的解;CB:解一元一次不等式组【分析】先解得不等式组中的两个不等式,然后取其交集即可为该不等式组的解集;将分式方程转化为整式方程,然后求x的值,根据x的取值范围判断分式方程的解是不是该不等式组的解【解答】解:,由得:x2;由得:x2,所以原不等式组的解集为:2x2方程去分母得:4x+2=93x,解得x=1经检验,x=1是分式方程的解,故方程的解不是不等式组的解【点评】考查了解分式方程和解一元一次不等式组一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集方法与步骤:求不等式组中每个不等式的解集;利用数轴求公共部分解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到17【考点】TA:解直角三角形的应用仰角俯角问题【分析】过点C作CDAB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,分别在RtACD中表示出CD和在RtBCD中表示出BD,从而利用二者之间的关系列出方程求解【解答】解:过点C作CDAB,交BA的延长线于点D则AD即为潜艇C的下潜深度,根据题意得ACD=30,BCD=68设AD=x则BD=BA十AD=1000+x,在RtACD中,CD=x,在RtBCD中,BD=CDtan681000+x=xtan68将tan682.5,1.7代入解得x308-潜艇C离开海平面的下潜深度约为308米【点评】本题考查了解直角三角形的应用,解题的关键是从题目中抽象出直角三角形并选择合适的边角关系求解18【考点】9A:二元一次方程组的应用;C9:一元一次不等式的应用【分析】(1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元,列出方程组求解即可;(2)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可【解答】解:(1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有,解得答:甲种商品的销售单价900元,乙种商品的销售单价600元;(2)设销售甲种商品a万件,依题意有900a+600(8a)5400,解得a2答:至少销售甲种商品2万件【点评】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系19【考点】KP:直角三角形斜边上的中线;LA:菱形的判定与性质【分析】(1)由DE=BC,DEBC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)在RtACD中只要证明ADC=60,AD=2即可解决问题;【解答】(1)证明:AD=2BC,E为AD的中点,DE=BC,ADBC,四边形BCDE是平行四边形,ABD=90,AE=DE,BE=DE,四边形BCDE是菱形(2)解:连接ACADBC,AC平分BAD,BAC=DAC=BCA,AB=BC=1,AD=2BC=2,sinADB=,ADB=30,DAC=30,ADC=60,在RtACD中,AD=2,CD=1,AC=【点评】本题考查菱形的判定和性质、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型20【考点】GB:反比例函数综合题【分析】(1)首先确定A、B两点坐标,再利用待定系数法即可解决问题;(2)分两种情形讨论求解即可【解答】解:(1)y=kx+b与反比例函数y=(x0)的图象分别交于点 A(m,3)和点B(6,n),m=2,n=1,A(2,3),B(6,1),则有,解得,直线AB的解析式为y=x+4(2)如图当PAOD时,PAOC,ADPCDO,此时p(2,0)当APCD时,易知PDACDO,直线AB的解析式为y=x+4,直线PA的解析式为y=2x1,令y=0,解得x=,P(,0),综上所述,满足条件的点P坐标为(2,0)或(,0)【点评】本题考查反比例函数综合题、一次函数的性质、相似三角形的判定和性质等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会用分类讨论的思想思考问题,属于中考常考题型21【考点】ME:切线的判定与性质;S9:相似三角形的判定与性质【分析】(1)求出OEDM,求出OEDE,根据切线的判定得出即可;(2)连接EN,求出MDE=MEN,求出MDEMEN,根据相似三角形的判定得出即可【解答】证明:(1)ME平分DMN,OME=DME,OM=OE,OME=OEM,DME=OEM,OEDM,DMDE,OEDE,OE过O,DE是O的切线;(2)连接EN,DMDE,MN为O的直径,MDE=MEN=90,NME=DME,MDEMEN,=,ME2=MDMN【点评】本题考查了切线的判定,圆周角定理,相似三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键22【考点】VB:扇形统计图;VC:条形统计图;W2:加权平均数;X6:列表法与树状图法【分析】(1)根据B组人数以及所占的百分比即可求出总人数,再求出C组人数即可解决问题;(2)利用加权平均数公式计算:910%+840%+730%+620%=7.4;(3)利用列表法即可解决问题;【解答】解:(1)410%=40(人),C等级的人数404168=12(人),C等级的人数所占的百分比1240=30%两个统计图补充如下:(2)910%+840%+730%+620%=7.4;(3)列表为:男1男2女1女2男1男2男1女1男1女2男1男2男1男2女1男2女2男2女1男1女1男2女1女2女1女2男1女2男2女2女1女2由上表可知,从4名学生中任意选取2名学生共有12种等可能结果,其中恰好选到1名男生和1名女生的结果有8种,所以恰好选到1名男生和1名女生的概率P=【点评】本题考查列表法与树状图、扇形统计图、条形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型23【考点】RB:几何变换综合题【分析】(1)根据等腰直角三角形的性质得到BCD=ACD=45,BCE=ACF=90,于是得到DCE=DCF=135,根据全等三角形的性质即可的结论;(2)证得CDFCED,根据相似三角形的性质得到,即CD2=CECF,根据等腰直角三角形的性质得到CD=AB,于是得到AB2=4CECF;如图,过D作DGBC于G,于是得到DGN=ECN=90,CG=DG,当CE=4,CF=2时,求得CD=2,推出CENGDN,根据相似三角形的性质得到=2,根据勾股定理即可得到结论【解答】(1)证明:ACB=90,AC=BC,AD=BD,BCD=ACD=45,BCE=ACF=90,DCE=DCF=135,在DCE与DCF中,DCEDCF,DE=DF;(2)解:DCF=DCE=135,CDF+F=180135=45,CDF+CDE=45,F=CDE,CDFCED,即CD2=CECF,ACB=90,AC=BC,AD=BD,C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论