




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数量关系,11.1,第一部分向量代数,第二部分空间解析几何,在三维空间中:,空间形式点,线,面,坐标,方程(组),空间解析几何与向量代数,一、空间直角坐标系,由三条互相垂直的数轴按右手规则,组成一个空间直角坐标系.,坐标原点,坐标轴,x轴(横轴),y轴(纵轴),z轴(竖轴),过空间一定点O,坐标面,卦限(八个),1.空间直角坐标系的基本概念,zOx面,在直角坐标系下,向径,坐标轴上的点P,Q,R;,坐标面上的点A,B,C,点M,特殊点的坐标:,有序数组,(称为点M的坐标),原点O(0,0,0);,坐标轴:,坐标面:,2.向量的坐标表示,在空间直角坐标系下,设点M,则,沿三个坐标轴方向的分向量,的坐标为,记,二、向量的模、方向角,1.向量的模与两点间的距离公式,则有,由勾股定理得,因,得两点间的距离公式:,对两点,与,4.求证以,证:,即,为等腰三角形.,的三角形是等腰三角形.,为顶点,5.在z轴上求与两点,等距,解:设该点为,解得,故所求点为,及,离的点.,2.方向角与方向余弦,设有两非零向量,任取空间一点O,称=AOB(0)为向量,的夹角.,类似可定义向量与轴,轴与轴的夹角.,与三坐标轴的夹角,为其方向角.,方向角的余弦称为其方向余弦.,方向余弦的性质:,三、曲面方程的概念,求到两定点A(1,2,3)和B(2,-1,4)等距离的点的,化简得,即,说明:动点轨迹为线段AB的垂直平分面.,引例:,显然在此平面上的点的坐标都满足此方程,不在此平面上的点的坐标不满足此方程.,解:设轨迹上的动点为,轨迹方程.,定义1.,如果曲面S与方程F(x,y,z)=0有下述关系:,(1)曲面S上的任意点的坐标都满足此方程,则F(x,y,z)=0叫做曲面S的方程,曲面S叫做方程F(x,y,z)=0的图形.,两个基本问题:,(1)已知一曲面作为点的几何轨迹时,(2)不在曲面S上的点的坐标不满足此方程,求曲面方程.,(2)已知方程时,研究它所表示的几何形状,(必要时需作图).,故所求方程为,例.求动点到定点,方程.,特别,当M0在原点时,球面方程为,解:设轨迹上动点为,即,依题意,距离为R的轨迹,表示上(下)球面.,例.研究方程,解:配方得,可见此方程表示一个球面,说明:如下形式的三元二次方程(A0),都可通过配方研究它的图形.,其图形可能是,的曲面.,表示怎样,半径为,球心为,一个球面,或点,或虚轨迹.,定义2.一条平面曲线,四、旋转曲面,绕其平面上一条定直线旋转,一周,所形成的曲面叫做旋转曲面.,该定直线称为旋转,轴.,例如:,建立yOz面上曲线C绕z轴旋转所成曲面的方程:,故旋转曲面方程为,当绕z轴旋转时,若点,给定yOz面上曲线C:,则有,则有,该点转到,思考:当曲线C绕y轴旋转时,方程如何?,例3.试建立顶点在原点,旋转轴为z轴,半顶角为,的圆锥面方程.,解:在yOz面上直线L的方程为,绕z轴旋转时,圆锥面的方程为,两边平方,例4.求坐标面xOz上的双曲线,分别绕x,轴和z轴旋转一周所生成的旋转曲面方程.,解:绕x轴旋转,绕z轴旋转,这两种曲面都叫做旋转双曲面.,所成曲面方程为,所成曲面方程为,五、柱面,引例.分析方程,表示怎样的曲面.,的坐标也满足方程,解:在xOy面上,,表示圆C,沿圆周C平行于z轴的一切直线所形成的曲面称为圆,故在空间,过此点作,柱面.,对任意z,平行z轴的直线l,表示圆柱面,在圆C上任取一点,其上所有点的坐标都满足此方程,定义.,平行定直线并沿定曲线C移动的直线l形成,的轨迹叫做柱面.,表示抛物柱面,母线平行于z轴;,准线为xOy面上的抛物线.,z轴的椭圆柱面.,z轴的平面.,表示母线平行于,(且z轴在平面上),表示母线平行于,C叫做准线,l叫做母线.,一般地,在三维空间,柱面,柱面,平行于x轴;,平行于y轴;,平行于z轴;,准线xOz面上的曲线l3.,母线,柱面,准线xOy面上的曲线l1.,母线,准线yOz面上的曲线l2.,母线,六、二次曲面,三元二次方程,适当选取直角坐标系可得它们的标准方程,下面仅,就几种常见标准型的特点进行介绍.,研究二次曲面特性的基本方法:截痕法,其基本类型有:,椭球面、抛物面、双曲面、锥面,的图形统称为二次曲面.,(二次项系数不全为0),1.椭球面,(1)范围:,(2)与坐标面的交线:椭圆,与,的交线为椭圆:,(4)当ab时为旋转椭球面;,同样,的截痕,及,也为椭圆.,当abc时为球面.,(3)截痕:,为正数),2.抛物面,(1)椭圆抛物面,(p,q同号),(2)双曲抛物面(鞍形曲面),(p,q同号),特别,当p=q时为绕z轴的旋转抛物面.,3.双曲面,(1)单叶双曲面,椭圆.,时,截痕为,(实轴平行于x轴;,虚轴平行于z轴),平面,上的截痕情况:,双曲线:,虚轴平行于x轴),时,截痕为,时,截痕为,(实轴平行于z轴;,相交直线:,双曲线:,(2)双叶双曲面,双曲线,椭圆,注意单叶双曲面与双叶双曲面的区别:,双曲线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年统编版(2024)小学语文一年级上册第二单元测试卷及参考答案
- 防汛知识培训工作方案课件
- 防汛救灾知识培训感悟课件
- 防汛抗灾知识培训课件
- 书店行业阅读推广方案
- 防拐防骗培训知识课件
- 【语文】期中练习卷(一) +2025-2026学年统编版语文八年级上册
- 雨水收集盖板更换合同4篇
- 男性输精管结扎术后附睾淤积症护理查房
- 医疗数据的可视化与成本控制分析-洞察及研究
- python程序设计-说课
- 虫害防治工作总结
- 《中国溃疡性结肠炎诊治指南(2023年)》解读
- 生鲜超市抖音推广方案
- 【自考复习资料】05175税收筹划(重点知识汇总)
- 新产品质量控制方案
- 普通高中物理课程标准解读
- 张拉应力及油表读数计算的表格
- 香港著名导演介绍
- 数独题目高级50题典型题带答案
- 大学美育(第二版) 课件 第五单元:书法艺术
评论
0/150
提交评论