




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程,学习目标,1.了解一元二次方程的概念.应用一元二次方程概念解决一些简单题目.2.一元二次方程的一般形式()及有关概念.3.会进行简单的一元二次方程的试解;理解方程解的概念,自学指导,问题1:如图,有一块长方形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?,()(),自学指导,问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?,(x1),x2x560,探究,个,次,整式,一个,二次,整式,一,2,ax2,a,bx,b,c,自学检测,解:(2)、(3)、(4),2将方程3x(x1)5(x2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.,解:去括号,得:3x23x5x10移项合并同类项,得:3x28x100其中二次项系数是3,一次项系数是8,常数项是10.,小组合作,1求证:关于x的方程(m28m17)x22mx10,不论m取何值,该方程都是一元二次方程,证明:m28m17(m4)21(m4)20(m4)210,即(m4)210不论m取何值,该方程都是一元二次方程,小组合作,2下面哪些数是方程2x210 x120的根?4,3,2,1,0,1,2,3,4,解:将上面的这些数代入后,只有2和3满足方程的等式,所以x2或x3是一元二次方程2x210 x120的两根,跟踪练习,1判断下列方程是否为一元二次方程:(1)1x20(2)2(x21)3y(3)2x23x10(4)0(5)(x3)2(x3)2(6)9x254x,解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.,2若x2是方程的一个根,求a的值.,解:x2是方程的一个根,解之得:a,跟踪练习,3根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;(2)一个长方形的长比宽多2,面积是100,求长方形的长x;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x.,解:(1)4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 共享出行市场技术创新与应用前景研究报告
- 火灾原因认定规则课件
- 井下照明设备项目可行性研究报告
- 年产8900吨工业冷水塔项目可行性研究报告
- 二零二五年度服务器租赁及网络安全风险评估合同
- 2025版垃圾处理工程合同担保与废物资源化利用合同范本
- 2025版合法借款合同(三)
- 二零二五年度多式联运货物运输合同模板
- 2025版旅游商业区商铺分租经营协议
- 二零二五年度搅拌站轮胎绿色生产项目融资合作协议
- 德佑房屋买卖合同范本
- GB/T 43933-2024金属矿土地复垦与生态修复技术规范
- (正式版)JBT 14875-2024 带式输送机 输送带纠偏装置
- 人教版数学六年级下册核心素养教案全册
- 新时代劳动教育教程(中职版劳动教育)全套教学课件
- 白银公司考试题2024
- 轧光机安全操作规程范本
- 眼耳鼻咽喉口腔科护理学(高职)全套教学课件
- 中国华能:风电机组数字化感知与运行状态评估
- 海洋岩土工程的挑战与机遇
- 《高中生物学习方法》课件
评论
0/150
提交评论