高考数学总复习离散型随机变量及其分布列、均值与方差_第1页
高考数学总复习离散型随机变量及其分布列、均值与方差_第2页
高考数学总复习离散型随机变量及其分布列、均值与方差_第3页
高考数学总复习离散型随机变量及其分布列、均值与方差_第4页
高考数学总复习离散型随机变量及其分布列、均值与方差_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【巩固练习】1某射手射击所得环数X的分布列为:X45678910P0.020.040.060.090.280.290.22则此射手“射击一次命中环数大于7”的概率为()A0.28B0.88C0.79 D0.512.(2015 辽宁校级模拟)同时抛掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为,则的数学期望是( ) A.20 B.25 C.30 D.403一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X4)的值为()A. B. C. D. 4设X是一个离散型随机变量,其分布列为:X101P0.512qq2则q等于()A1 B1C1 D15随机变量X的概率分布规律为P(Xk),k1,2,3,4,其中c是常数,则P(X0,y0,随机变量的方差D,则xy_.123Pxyx7甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得1分)若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是_8马老师从课本上抄录一个随机变量的概率分布列如下表:x123P(x)?!?请小牛同学计算的数学期望尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同据此,小牛给出了正确答案E_.9.(2015 上海高考)赌博有陷阱某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元)若随机变量1和2分别表示赌客在一局赌博中的赌金和奖金,则 E1E2= (元)10.(2015 湖南高考)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望11某学校高一年级开设了五门选修课为了培养学生的兴趣爱好,要求每个学生必须参加且只能选修一门课程假设某班甲、乙、丙三名学生对这五门课程的选择是等可能的()求甲、乙、丙三名学生参加五门选修课的所有选法种数;()求甲、乙、丙三名学生中至少有两名学生选修同一门课程的概率;()设随机变量为甲、乙、丙这三名学生参加课程的人数,求的分布列与数学期望12.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.()若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率;()若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数的分布列及期望,并求该商家拒收这批产品的概率.13.某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响。已知师父加工一个零件是精品的概率为,师徒二人各加工2个零件都是精品的概率为。()求徒弟加工2个零件都是精品的概率;()求徒弟加工该零件的精品数多于师父的概率;()设师徒二人加工出的4个零件中精品个数为,求的分布列与均值。14袋中装着标有数字1,2,3,4的小球各3个,从袋中任取3个小球,每个小球被取出的可能性都相等()求取出的3个小球上的数字互不相同的概率;()用表示取出的3个小球上所标的最大数字,求随机变量的分布列和均值15某公园设有自行车租车点, 租车的收费标准是每小时2元(不足1小时的部分按1小时计算).甲、乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为;一小时以上且不超过两小时还车的概率分别为;两人租车时间都不会超过三小时.()求甲、乙两人所付租车费用相同的概率;()设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望.【参考答案】1【答案】C 【解析】P(X7)P(X8)P(X9)P(X10)0.280.290.220.79.2.【答案】B【解析】抛掷一次,正好出现2枚正面向上,3枚反面向上的概率为 每次抛掷出现2枚正面向上,3枚反面向上的概率是相同的,且各次试验中事件是相互独立的服从二项分布故选B.【解析】由题意取出的3个球必为2个旧球1个新球,故P(X4)4【答案】C【解析】由分布列的性质得:5【答案】D【解析】由题意,得,即,于是P(X)P(X1)P(X2)6【答案】 【解析】 2xy1,E4x2y2,D(1)2x12x2xx,y1,所以xy.7【答案】答案:1,0,1,2,3【解析】甲获胜且获得最低分的情况是:甲抢到一题并回答错误,乙抢到两题并且都回答错误,此时甲得1分,故X的所有可能取值为1,0,1,2,3.8【答案】2【解析】设“?”处数值为t,则“!”处的数值为12t,所以Et2(12t)3t2.9.【答案】0.2【解析】赌金的分布列为112345P所以 E1=(1+2+3+4+5)=3,奖金的分布列为:若两张卡片上数字之差的绝对值为1,则有(1,2),(2,3),(3,4),(4,5),4种,若两张卡片上数字之差的绝对值为2,则有(1,3),(2,4),(3,5),3种,若两张卡片上数字之差的绝对值为3,则有(1,4),(2,5),2种,若两张卡片上数字之差的绝对值为4,则有(1,5),1种,则P(2=1.4)=,P(2=2.8)=,P(2=4.2)=,P(2=5.6)=21.42.84.25.6P所以 E2=1.4(1+2+3+4)=2.8,则 E1E2=32.8=0.2元10.【解析】(1)记事件A1=从甲箱中摸出一个球是红球,事件A2=从乙箱中摸出一个球是红球,事件B1=顾客抽奖1次获一等奖,事件B2=顾客抽奖1次获二等奖,事件C=顾客抽奖1次能获奖,由题意A1,A2相互独立,互斥,B1,B2互斥,且B1=A1A2,B2=+,C=B1+B2,因为P(A1)=,P(A2)=,所以,P(B1)=P(A1)P(A2)=,P(B2)=P()+P()=+=,故所求概率为:P(C)=P(B1+B2)=P(B1)+P(B2)=(2)顾客抽奖1次可视为3次独立重复试验,由(1)可知,顾客抽奖1次获一等奖的概率为:所以XB于是,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=故X的分布列为: X 0 1 2 3 PE(X)=3=3【答案】C11【解析】()甲、乙、丙三名学生每人选择五门选修课的方法数是5种,故共有(种)()三名学生选择三门不同选修课程的概率为: 三名学生中至少有两人选修同一门课程的概率为:()由题意:; ; 的分布列为数学期望=12.【解析】()记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件来算,有()可能的取值为 ,记“商家任取2件产品检验,都合格”为事件B,则商家拒收这批产品的概率所以商家拒收这批产品的概率为。13.【解析】()设徒弟加工1个零件是精品的概率为p1由得, 所以徒弟加工2个零件都是精品的概率是 ()设徒弟加工零件的精品数多于师父的概率为p2由()知,师父加工两个零件中,精品个数的分布列如下:012p徒弟加工两个零件中,精品个数的分布列如下:012p所以p2= 01234p()的分布列为的期望为0+1+2+3+4= 14【解析】(I)“一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论