高考数学总复习离散型随机变量及其分布列、均值与方差(2)_第1页
高考数学总复习离散型随机变量及其分布列、均值与方差(2)_第2页
高考数学总复习离散型随机变量及其分布列、均值与方差(2)_第3页
高考数学总复习离散型随机变量及其分布列、均值与方差(2)_第4页
高考数学总复习离散型随机变量及其分布列、均值与方差(2)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考总复习:离散型随机变量及其分布列、期望与方差编稿:孙永钊 审稿:张林娟【考纲要求】一、离散型随机变量及其分布列(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;(2)理解超几何分布及其导出过程,并能进行简单的应用。二、离散型随机变量的均值与方差(1)理解取有限个值的离散型随机变量均值、方差的概念;(2)能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。随机变量离散型随机变量分布列均值方差【知识网络】【考点梳理】考点一、离散型随机变量及其分布列一、离散型随机变量的概念随着试验结果变化而变化的变量称为随机变量,常用字母X,Y,表示。所有取值可以一一列出的随机变量,称为离散型随机变量。要点诠释:1所谓随机变量,就是试验结果和实数之间的一个对应关系。这与函数概念在本质上是相同的,不同的是函数的自变量是实数,而随机变量的自变量是试验结果。2如果随机变量可能取的值为有限个,则我们能够把其结果一一列举出来。3随机变量是随机试验的结果数量化,变量的取值对应随机试验的某一个随机事件,在学习中,要注意随机变量与以前所学的变量的区别与联系。二、离散型随机变量的分布列及性质1一般地,若离散型随机变量X可能取的不同值为,X取每一个值的概率,则表XP称为离散型随机变量X的概率分布列,简称为X的分布列,有时为了表达简单,也用等式表示X的分布列。2离散型随机变量的分布列的性质0();。要点诠释:求离散型随机变量的分布列时,首先确定随机变量的极值,求出离散型随机变量的每一个值对应的概率,最后列成表格。1分布列可由三种形式,即表格、等式和图象表示。在分布列的表格表示中,结构为2行n+1列,第1行表示随机变量的取值,第2行是对应的变量的概率。2求分布列分为以下几步:(1)明确随机变量的取值范围;(2)求出每一个随机变量取值的概率;(3)列成表格。分布的求解应注意以下几点:(1)搞清随机变量每个取值对应的随机事件;(2)计算必须准确无误;(3)注意运用分布列的两条性质检验所求的分布列是否正确。考点二、常见离散型随机变量的分布列1.两点分布X01P1-pp若随机变量X服从两点分布,即其分布列为,其中称为成功概率。2.几何分布独立重复试验中,某个事件第一次发生时所作试验的次数也是一个正整数的离散型随机变量。表示在第k次独立重复试验时该事件第一次发生, 如果把第k次重复试验时事件A发生记作Ak,事件A不发生记作且那么离散型随机变量的概率分布是:123kPP(1-P)P(1-P)2P(1-P)k-1P称这样的随机变量服从几何分布,记作其中若随机变量服从几何分布,则,3.超几何分布在含有M件次品的N件新产品中,任取n件,其中恰有X件次品,则事件X=k发生的概率为其中m=minM,n,且nN,MN,n,M,N,称分布列X01mP为超几何分布列。考点三、离散型随机变量的均值与方差一、离散型随机变量的均值与方差若离散型随机变量X的分布列为XP1期望称EX=+为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平。2方差称DX=为随机变量X的方差,它刻画了随机变量X与其均值EX的平均偏离程度,其算术平方根为随机变量X的标准差,记作。要点诠释:随机变量的期望、方差是一个常数,样本期望、方差是一个随机变量,随观测次数的增加或样本容量的增加,样本的期望、方差趋于随机变量的期望与方差。二、求离散型随机变量均值与方差的方法:(1)理解的意义,写出可能取的全部值;(2)求取每个值的概率;(3)写出的分布列;(4)由均值的定义求E;(5)由方差的定义求D。要点诠释:(1)随机变量的均值等于该随机变量的每一个取值与取该值时对应的概率乘积的和。(2)均值(数学期望)是随机变量的一个重复特征数,它反映或刻画的是随机变量值的平均水平,均值(数学期望)是算术平均值概念的推广,是概率意义下的平均。(3)EX是一个实数,即X作为随机变量是可变的,而EX是不变的。三、期望与方差的性质1E(aX+b)=aEX+b2D(aX+b)=a2DX.(a,b为常数)3. 期望与方差的关系.如果和都存在,则设和是互相独立的两个随机变量,则期望与方差的转化:(因为为一常数)=-=0.四、两点分布与二项分布的均值、方差1若X服从两点分布,则EX=p,DX=p(1-p)。2若XB(n,p),则EX=np.DX=np(1-p)。【典型例题】类型一、离散型随机变量的概念【例1】写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果。(1)一个口袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数为。(2)投掷两枚骰子,所得点数之和为X,所得点数的最大值为Y。【思路点拨】(1)3个球中,可能有1个白球,也可能有两个,还可能没有。(2)投掷结果为,其中且。利用投掷结果确定X,Y。【解析】(1)可取0,1,2。=0表示所取3个球中没有白球;=1表示所取3个球中有一个白球,2个黑球;=2表示所取3个球鞋中有2个白球,1个黑球。(1)X的可能取值2,3,4,5,12。Y的可能取值为1,2,3,6。若以表示先后投掷的两枚骰子出现的点数。则X=2表示(1,1),X=3表示(1,2),(2,1),X=4表示(1,3),(2,2),(3,1),X=12表示(6,6);Y=1表示(1,1),Y=2表示(1,2),(2,1),(2,2),Y=3表示(1,3),(2,3),(3,3),(3,1),(3,2),Y=6表示(1,6),(2,6),(3,6),(6,6),(6,5),(6,1)。【总结升华】随机变量并不一定要取整数值,它的取值一般来源于实际问题,且有特定的含义,因此,可以是R中的任意值但这并不意味着可以取任何值,它只能取分布列中的值。举一反三:【变式1】写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数; (2)某单位的某部电话在单位时间内收到的呼叫次数【解析】(1)可取3,4,5 =3,表示取出的3个球的编号为1,2,3; =4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5(2)可取0,1,,n,=i,表示被呼叫i次,其中i=0,1,2,【变式2】写出下列随机变量可能取的值,并说明随机变量所取的值所表示的随机试验的结果:(1)袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为;(2)抛掷两个骰子,所得点数之和为,所得点数之和是偶数为。【答案】(1)的所有可能取值为0,1,2,3,4。=k表示取出的4个球中,有k个红球,4k个白球(k=0,1,2,3,4)。(2)的所有可能取值为2,3,4,12。若以(i,j)表示抛掷甲、乙两个骰子后骰子甲得i点且骰子乙得j点,则=2表示(1,1);=3,表示(2,1),(1,2);=4,表示(1,3),(2,2),(3,1);=12,表示(6,6)。的可能取值为2,4,6,12。类型二、离散型随机变量分布列的性质【例2】设离散型随机变量X的分布列为X01234P02010103m求:(1)2X+1的分布列;(2)|X-1|的分布列。【思路点拨】先由分布列的性质,求出m,由函数对应关系求出2X+1和|X-1|的值及概率。【解析】由分布列的性质知:02+0.1+0.1+0.3+m=1,m=0.3.首先列表为:X012342X+113579|X-1|10123从而由上表得两个分布列为:(1)2X+1的分布列:2X+113579P0.20.10.10.30.3(2)|X-1|的分布列:|X-1|0123P0.10.30.30.3【总结升华】利用分布列的性质,可以求分布列中的参数值。对于随机变量的函数(仍是随机变量)的分布列,可以按分布的定义来求。【例3】若离散型随机变量的概率分布列为:01p9c2-c3-8c试求出常数c与的分布列。【思路点拨】利用离散型随机变量分布列的性质解决。【解析】由离散型随机变量分布列的基本性质知:解得常数,从而的分布列为:01p【总结升华】解题关键是理解随机变量分布列的两个基本性质,在写出的分布列后,要及时检查所有的概率之和是否为1。举一反三:【变式1】某一射手射击所得的环数的分布列如下:45678910P0.020.040.060.090.280.290.22求此射手“射击一次命中环数7”的概率【答案】根据射手射击所得的环数的分布列,有 P(=7)0.09,P(=8)0.28,P(=9)0.29,P(=10)0.22.所求的概率为 P(7)0.09+0.28+0.29+0.220.88【变式2】随机变量的分布列如下:其中成等差数列,若,则的值是 【答案】;由题意知:,解得,所以。类型三、离散型随机变量的分布列【例4】掷两颗骰子,设掷得点数和为随机变量:(1)求的分布列;(2)求P(37)。【思路点拨】要根据随机变量的定义考虑所有情况【解析】(1)用数轴表示出掷骰子的所有结果如图所示的取值为2,3,4,10,11,12。,。的分布列为:23456789101112P(2)。【总结升华】确定随机变量的可能取值和每一个可能取值的概率是求概率分布列的关键,本题求概率采用的是古典概型中的列举法举一反三:【变式】一袋装有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3球鞋,以X表示取出球的最大号码,求X的分布列。【解析】随机变量X的取值为3,4,5,6,从袋中随机地取3个球,包含的基本事件总数为,事件“X=3”包含的基本事件总数为,事件“X=4”包含的基本事件总数为;事件“X=5”包含的基本事件总数为;事件“X=6”包含的基本事件总数为;从而有随机变量X的分布列为:X3456P【例5】在10件产品中有2件次品,连续抽3次,每次抽1件,求:(1)不放回抽样时,抽到次品数的分布列;(2)放回抽样时,抽到次品数的分布列.【思路点拨】(1)由题意知随机变量可以取0,1,2,当=0时表示没有抽到次品,当=1时表示抽到次品数是一个,=2时表示抽到次品数是两个根据古典概型公式得到概率,写出分布列(2)由题意知放回抽样时,每一次抽样可以作为一次实验,抽到次品的概率是相同的,且每次试验之间是相互独立的,得到B(3,0.8,再根据二项分布得到结果。【解析】也可以取0,1,2,3,放回抽样和不放回抽样对随机变量的取值和相应的概率都产生了变化,要具体问题具体分析.(1)随机变量取值为0,1,2P(=0)=,P(=1)=,P(=2)=,所以的分布列为012P(2)随机变量取值为0,1,2,3P(=k)=C0.83k0.2k(k=0,1,2,3),所以的分布列如下,0123PC0.83C0.820.2C0.80.22C0.23【总结升华】有放回抽样和不放回抽样对随机变量的取值和相应的概率都产生了变化,要具体问题具体分析。有放回抽样时,抽到的次品数为独立重复试验事件,即B(3,0.8)。举一反三:【变式】高清视频离散型随机变量及其分布列、均值与方差例5、有10件产品,其中3件是次品.从中任取2件,若抽到的次品数为,求的分布列,期望和方差.【解析】由题意,知取值为0,1,2。每个值对应的概率为: P(=0)=,P(=1)=,P(=2)=所以E=,D=【例6】某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.() 随机选取1件产品,求能够通过检测的概率;()随机选取3件产品,其中一等品的件数记为,求的分布列;() 随机选取3件产品,求这三件产品都不能通过检测的概率.【思路点拨】()要考虑两种情况:一选取1件产品是一等品,二选取1件产品是二等品。() 由题设知X的可能取值为0,1,2,3,分别求出P(X=0),P(X=1),P(X=2),P(X=3),由此能求出EX() 设随机选取3件产品都不能通过检测的事件为B,事件B等于事件“随机选取3件产品都是二等品且都不能通过检测”,由此能求出随机选取3件产品,这三件产品都不能通过检测的概率。【解析】()设随机选取一件产品,能够通过检测的事件为,事件等于事件 “选取一等品都通过检测或者是选取二等品通过检测” () 由题可知可能取值为0,1,2,3. ,. 0123()设随机选取3件产品都不能通过检测的事件为 事件等于事件“随机选取3件产品都是二等品且都不能通过检测”所以,. 【总结升华】本题考查离散型随机变量的分布列和数学期望,是历年高考的必考题型解题时要认真审题,仔细解答,注意概率知识的灵活运用。举一反三:【变式】从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:“取出的2件产品中至多有1件是二等品”的概率(1)求从该批产品中任取1件是二等品的概率;(2)若该批产品共100件,从中任意抽取2件,表示取出的2件产品中二等品的件数,求的分布列【解析】(1)记表示事件“取出的2件产品中无二等品”,表示事件“取出的2件产品中恰有1件二等品”则互斥,且,故于是解得;(2)的可能取值为若该批产品共100件,由(1)知其二等品有件,故,所以的分布列为012类型四、离散型随机变量的期望和方差【例7】现有甲、乙两个项目,对甲项目每投资十万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为、;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是p(0p1),设乙项目产品价格在一年内进行两次独立的调整。记乙项目产品价格在一年内的下降次数为X,对乙项目每投资十万元,X取0、1、2时。随机变量,分别表示对甲、乙两项目各投资十万元一年后的利润。(1)求,的概率分布列和期望,;(2)当时,求p的取值范围。【思路点拨】(1)先确定的取值,再求的取值对应的概率;(2)根据第一问求出期望,再由,找出关于p的不等式,即可求出p的范围。【解析】(1)方法一:的概率分布列为12118117P=12+118+117=118。由题设得XB(2,p),即X的概率分布列为X012p(1-p)22p(1-p)P2故的概率分布列为1312502P(1-p)22p(1-p)P2所以的均值列为=13(1-p)2+1252p(1-p)+ 02P2=- P2-0.1p+1.3方法二: 的概率分布列为12118117P=12+118+117=118。设表示事件“第次调整,价格下降”(=1,2),则P(X=0)=P()P()=(1-p)2,P(X=1)=P()P()+P()P()=2p(1-p),P(X=2)=P()P()=P2.故的概率分布列为1312502P(1-p)22p(1-p)P2所以的均值列为=13(1-p)2+1252p(1-p)+ 02P2=- P2-0.1p+1.3(2)由,得- P2-0.1p+1.31.18,整理得(p+0.4)(p-0.3) 0,解得-0.4p0.3.因为0p1,所以当时,p的取值范围是0p0.3.【总结升华】求离散型随机变量分布列时要注意两个问题:一是求出随机变量所有可能的值;二是求出取每一个值时的概率。求随机变量的分布列,关键是概率类型的确定与转化,如古典概率、互斥事件的概率、相互独立事件同时发生的概率、n次独立重复试验有k次发生的概率等。举一反三:【变式】已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球现从甲、乙两个盒内各任取2个球()求取出的4个球均为黑球的概率;()求取出的4个球中恰有1个红球的概率;()设为取出的4个球中红球的个数,求的分布列和数学期望【解析】“从甲盒内取出的2个球均为黑球”为事件,“从乙盒内取出的2个球均为黑球”为事件由于事件相互独立,且,故取出的4个球均为黑球的概率为()设“从甲盒内取出的2个球均为黑球,从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件,“从甲盒内取出的2个球中,1个是红球,1个是黑球,从乙盒内取出的2个球均为黑球”为事件由于事件互斥,且,故取出的4个球中恰有1个红球的概率为()可能的取值为由(),()得,从而的分布列为0123的数学期望【例8】甲、乙、丙人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙面试合格的概率都是,且面试是否合格互不影响()求至少有1人面试合格的概率;()求签约人数的分布列和数学期望【思路点拨】()可从求对立事件概率考虑,“至少有1人面试合格”的对立事件是“3人面试都不合格”,由对立事件的概率,计算可得答案。()根据题意,易得的可能取值为0,1,2,3,分别计算其概率可得分布列,由期望的计算公式,结合分布列计算可得的期望。【解析】()用A,B,C分别表示事件甲、乙、丙面试合格.由题意知A,B,C相互独立,且.至少有1人面试合格的概率是 ()的可能取值为0,1,2,3. = 的分布列是0123 的期望【总结升华】本题考查对立事件、相互独立事件的概率计算与由分布列求期望的方法,关键是明确事件之间的关系,准确求得概率。举一反三:【变式】A、B两个代表队进行乒乓球对抗赛,每队三名队员,A队队员是A1,A2,A3,B队队员是B1,B2,B3,按以往多次比赛的统计,对阵队员之间胜负概率如下:对阵队员A队队员胜的概率A队队员负的概率A1对B1A2对B2A3对B3现按表中对阵方式出场,每场胜队得1分,负队得0分,设A队、B队最后所得总分分别为、,(1)求、的概率分布;(2)求E、E。【解析】(1)、的可能取值分别为3,2,1,0,根据题意知+=3,所以。(2)因为+=3,所以例9(2015 安徽高考)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束()求第一次检测出的是次品且第二次检测出的是正品的概率;()已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)【解析】()记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)=()X的可能取值为:200,300,400P(X=200)=P(X=300)=P(X=400)=1P(X=200)P(X=300)=X的分布列为: X 200 300 400 PEX=200+300+400=350举一反三:【变式】(2015 天津高考)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加,现有来自甲协会的运动员3名,其中种子选手2名,乙协会的运动员5名,其中种子选手3名,从这8名运动员中随机选择4人参加比赛()设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;()设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望【解析】()由已知,有P(A)=,事件A发生的概率为;()随机变量X的所有可能取值为1,2,3,4P(X=k)=(k=1,2,3,4)随机变量X的分布列为: X 1 2 3 4 P随机变量X的数学期望E(X)=类型五、离散型随机变量的期望和方差在实际生活中的应用【例10】A、B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:A机床次品数10123概率p0.70.20.060.04B机床次品数20123概率p0.80.060.040.10问哪一台机床加工质量较好.【思路点拨】先求出两组数据的期望,再做出两组数据的方差,把所求的期望和方差进行比较,得到两台机器生产的零件次品数的期望相等,而第二台的方差大于第一台的方差,得到结论。【解析】E1=00.7+10.2+20.06+30.04=0.44,E2=00.8+10.06+20.04+30.10=0.44它们的期望相同,再比较它们的方差。D1=(0-0.04)20.7+(1-0.44)20.2+(2-0.44)20.06+(3-0.44)20.04=0.6064,D2=(0-0.44)20.8+(1-0.44)20.06+(2-0.44)20.04+(3-0.44)20.10=0.9264D1D,可见乙的技术比较稳定。【例11】某公司要将一批海鲜用汽车运往地,如果能按约定日期送到,则公司可获得销售收入30万元,每提前一天送到,可多获得1万元,每迟到一天送到,将少获得1万元.为保证海鲜新鲜,汽车只能在约定日期的前两天出发,且行驶路线只能选择公路1或公路2中的一条,运费由公司承担,其他信息如表所示 统计信息汽车行驶路线不堵车的情况下到达城市乙所需时间(天)堵车的情况下到达城市乙所需时间(天)堵车的概率运费(万元)公路1231.6公路2140.8()记汽车走公路1时公司获得的毛利润为(万元),求的分布列和数学期望E;()

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论