




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次不等式及其解法编稿:张希勇 审稿:张希勇【学习目标】1.掌握一元二次不等式的解法,体会数形结合的思想;2.理解一元二次不等式、一元二次方程与二次函数之间的关系;3.能利用一元二次不等式解决简单的实际问题.【要点梳理】要点一、一元二次不等式及一元二次不等式的解集只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.比如:.一元二次不等式的一般形式:或.设一元二次方程的两根为且,则不等式的解集为,不等式的解集为要点诠释:讨论一元二次不等式或其解法时要保证成立.要点二、一元二次不等式与相应函数、方程之间的联系对于一元二次方程的两根为且,设,它的解按照,可分三种情况,相应地,二次函数的图像与轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式或的解集.二次函数()的图象有两相异实根有两相等实根无实根要点诠释:(1)一元二次方程的两根是相应的不等式的解集的端点的取值,是抛物线与轴的交点的横坐标;(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;(3)解集分三种情况,得到一元二次不等式与的解集.要点三、解一元二次不等式的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程,计算判别式: 时,求出两根,且(注意灵活运用因式分解和配方法);时,求根;时,方程无解 (3)根据不等式,写出解集.用程序框图表示求解一元二次不等式ax2+bx+c0(a0)的过程开始结束将原不等式化成一般形式ax2+bx+c0(a0)=b2-4ac求方程ax2+bx+c=0的两个根x1、x2方程ax2+bx+c=0没有实数根原不等式解集为R原不等式解集为原不等式解集为x|xx2(x10【解析】若a=0,原不等式化为-x+10,解集为x|x1;若a0,原不等式为关于x的一元二次不等式.方程的判别式=1-4a ()当=1-4a0,即时,方程有两个不等实数根,当时,函数的图象开口向上,与x轴有两个不同的交点,且,其简图如下:所以,此时不等式的解集为;当a0时,函数的图象开口向下,与x轴有两个不同的交点,且,其简图如下:所以,此时不等式的解集为;综上所述:a0时,原不等式解集为;a=0时,原不等式解集为;时,原不等式解集为;时,原不等式解集为;时,原不等式解集为实数集R.【总结升华】对含字母的二元一次不等式,一般有这样几步:定号:对二次项系数大于零和小于零分类,确定了二次曲线的开口方向;求根:求相应方程的根.当无法判断判别式与0的关系时,要引入讨论,分类求解;定解:根据根的情况写出不等式的解集;当无法判断两根的大小时,引入讨论.举一反三:【变式1】(2015 天津校级模拟)已知2a+15a或x-a B.x|-ax5aC. x|x-a D.x|5ax0; 方程(x-5a)(x+a)的两根为 且2a+10,a-, 5a-a 原不等式的解集为x|x-a。故选C.【高清课堂:一元二次不等式及其解法387159题型二 含参数的一元二次不等式的解法】【变式2】求不等式12x2axa2(aR)的解集【答案】当a0时,不等式的解集为;当a0时,不等式的解集为x|xR且x0;当a0时,不等式的解集为.【变式3】(2015秋 太原校级期中)已知集合A=xx22ax8a20。(1)当a=1时,求集合;(2)若a0,且,求实数a的取值范围。【答案】(1)当a=1时,x22ax8a20化为x22x80,解得:2x4。A=x2x4。;(2)由x22ax8a20,且a0,得2ax4a。A=x2ax4a。由,得,解得。实数a的取值范围是。例3解关于x的不等式:ax2(a+1)x+10.【思路点拨】解不等式时首先应判断两根的大小,若不能判断两根的大小应分类讨论;【解析】若a=0,原不等式x+10x1;若a0,原不等式或x1;若a0,原不等式,其解的情况应由与1的大小关系决定,故(1)当a=1时,原不等式;(2)当a1时,原不等式;(3)当0a1时,原不等式综上所述:当a0,解集为;当a=0时,解集为x|x1;当0a1时,解集为;当a=1时,解集为;当a1时,解集为.【总结升华】熟练掌握一元二次不等式的解法是解不等式的基础,对最高项含有字母系数的不等式,要注意按字母的取值情况进行分类讨论,分类时要“不重不漏”.举一反三:【变式1】解关于x的不等式:(ax-1)(x-2)0; 【答案】当a=0时,x(-,2. 当a0时,方程(ax-1)(x-2)=0两根为当a0时,若, 即时,;若, 即时,xR; 若, 即时,.当a0时,则有:, .【变式2】解关于x的不等式:ax22x-10时,则0,.a0时,若a0,0, 即a-1时,xR;若a0,=0, 即a=-1时,xR且x1;若a0, 即 -1a0时, .类型三:一元二次不等式的逆向运用例4. 不等式的解集为,求关于的不等式的解集.【思路点拨】由二次不等式的解集为可知:4、5是方程的二根,故由韦达定理可求出、的值,从而解得. 【解析】由题意可知方程的两根为和由韦达定理有,化为,即,解得,故不等式的解集为.【总结升华】二次方程的根是二次函数的零点,也是相应的不等式的解集的端点.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系,这一点是解此类题的关键.举一反三:【变式1】(2015 浙江校级模拟)设关于x的不等式(ax-1)(x+1)0(aR)的解集为x|-1x1,则a的值是( ) A.-2 B.-1 C.0 D.1【答案】关于x的不等式(ax-1)(x+1)0(aR)的解集为x|-1x0对一切实数x恒成立,求实数m的取值范围.【思路点拨】不等式对一切实数恒成立,即不等式的解集为R,要解决这个问题还需要讨论二次项的系数。【解析】(1)当m2+4m-5=0时,m=1或m=-5若m=1,则不等式化为30, 对一切实数x成立,符合题意.若m=-5,则不等式为24x+30,不满足对一切实数x均成立,所以m=-5舍去.(2)当m2+4m-50即 m1且m-5时,由此一元二次不等式的解集为R知,抛物线y=(m2+4m-5)x2-4(m-1)x+3开口向上,且与x轴无交点,所以, 即, 1m19. 综上所述,实数m的取值范围是m|1m19. 【总结升华】情况(1)是容易忽略的,所以当我们遇到二次项系数含有字母时,一般需讨论.举一反三:【变式1】 若关于的不等式的解集为空集,求的取值范围.【答案】关于的不等式的解集为空集即的解集为R当时,原不等式为:,即,不符合题意,舍去.当时,原不等式为一元二次不等式,只需且,即,解得,综上,的取值范围为:.【高
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工离岗测试题及答案
- 2025年国家电梯作业人员T证考试练习题库(含答案)
- 静脉输液考试测试卷附答案
- 2024年下半年全国事业单位联考A类《综合应用能力》真题(附答案)
- 北京特产工艺品知识培训课件
- 消毒消毒考试题及答案
- 电工(初级工)模拟练习题与参考答案
- 2024年度河南安全生产月知识考试试题附参考答案
- 2024年第六届全国安全生产知识竞赛题库与答案
- 标准日本语阅读课件
- 建设集团有限公司安全生产管理制度汇编
- 行为习惯养成教育校本教材
- 交通信号控制系统检验批质量验收记录表
- 疫苗运输温度记录表
- 各国钢材-合金牌号对照表
- 医院定岗定编要点
- logopress3培训视频教程整套模具大纲
- DB32-T 2945-2016硬质合金刀具PVD涂层测试方法-(高清现行)
- TB∕T 3526-2018 机车车辆电气设备 接触器
- 发电厂项目施工技术标—热控专业施工方案
- 1331等腰三角形的性质课件
评论
0/150
提交评论