




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2.2立体几何中的向量方法(二)课件新人教版(选修2-1),ZPZ,3.2.2立体几何中的向量方法(二),空间“距离”问题,一、复习引入,用空间向量解决立体几何问题的“三步曲”。,(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;,(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;,(3)把向量的运算结果“翻译”成相应的几何意义。,(化为向量问题),(进行向量运算),(回到图形),空间“距离”问题,1.空间两点之间的距离,根据两向量数量积的性质和坐标运算,利用公式或(其中),可将两点距离问题转化为求向量模长问题,例1:如图1:一个结晶体的形状为四棱柱,其中,以顶点A为端点的三条棱长都相等,且它们彼此的夹角都是60,那么以这个顶点为端点的晶体的对角线的长与棱长有什么关系?,解:如图1,设,化为向量问题,依据向量的加法法则,,进行向量运算,所以,回到图形问题,这个晶体的对角线的长是棱长的倍。,思考:,(1)本题中四棱柱的对角线BD1的长与棱长有什么关系?,(2)如果一个四棱柱的各条棱长都相等,并且以某一顶点为端点的各棱间的夹角都等于,那么有这个四棱柱的对角线的长可以确定棱长吗?,分析:,分析:,这个四棱柱的对角线的长可以确定棱长。,(3)本题的晶体中相对的两个平面之间的距离是多少?设AB=1(提示:求两个平行平面的距离,通常归结为求两点间的距离),H,分析:面面距离,点面距离,解:,所求的距离是,问题:如何求直线A1B1到平面ABCD的距离?,2、向量法求点到平面的距离:,例2,解:以点C为坐标原点建立空间直角坐标系如图所示,设则:,所以:,所以与所成角的余弦值为,例4如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,E是PC的中点,作EFPB交PB于点F.(1)求证:PA/平面EDB(2)求证:PB平面EFD(3)求二面角C-PB-D的大小。,A,B,C,D,P,E,F,A,B,C,D,P,E,F,解:如图所示建立空间直角坐标系,点D为坐标原点,设DC=1,(1)证明:连结AC,AC交BD于点G,连结EG,A,B,C,D,P,E,F,G,(2)求证:PB平面EFD,A,B,C,D,P,E,F,(3)求二面角C-PB-D的大小。,A,B,C,D,P,E,F,D,A,B,C,G,F,E,D,A,B,C,G,F,E,解:如图,以D为原点建立空间直角坐标系Dxyz则D(0,0,0),A(,0,0),B(,0),C(0,0),P(0,0,),2.(课本第107页练习2)如图,60的二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直AB,已知AB4,AC6,BD8,求CD的长.,a,b,C,D,A,B,CD为a,b的公垂线,则,A,B分别在直线a,b上,3.异面直线间的距离,A,B,C,C1,取x=1,则y=-1,z=1,所以,E,A1,B1,小结,1、E为平面外一点,F为内任意一点,为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025设备材料购销合同范本范文
- 农业种植技术服务合作合同书
- 红楼梦课件无水印
- 工业园区租赁经营协议
- 员工培训与委托培养协议内容说明
- 工艺品设计与制作服务合同
- 业务洽谈合同条款审查模板
- 农业金融投资合作合同
- 诗人杜牧简介
- 2025年征兵考试题库及答案
- 2025至2030全球及中国过敏原提取物行业产业运行态势及投资规划深度研究报告
- 物业基础培训课件
- 人教版九年级上册历史期末复习知识点考点背诵提纲详细版
- 2025年广东省中考英语真题(原卷版)
- 捐资奖学金活动方案
- 非标自动化培训
- 2025年贵州省中考化学试卷真题(含答案解析)
- 高桩码头施工培训课件
- 2025至2030中国工业混合式步进电机行业发展趋势分析与未来投资战略咨询研究报告
- 《大学体育理论与实践教程》大学体育课程全套教学课件
- 2025年电信网上大学智能云服务交付工程师认证参考试题库-上(单选题)
评论
0/150
提交评论