




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020年高二数学理科排列组合二项式定理概率复数测试题本试卷试所有试题均由07年高考试题重组而成,适合高二期末复习,或高三一轮复习参考使用,目的让学生了解高考的重点,明确自已的学习方向也为教师提供教学参考卷11如果的展开式中含有非零常数项,则正整数的最小值为()356102若a为实数,i,则a等于(A)(B)-(C)2(D)-23图3是某汽车维修公司的维修点环形分布图,公司在年初分配给A、 B、C、D四个维修点某种配件各50件在使用前发现需将A、B、C、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在 相邻维修点之间进行那么要完成上述调整,最少的调动件次(件配件从一个维修点调整到相邻维修点的调动件次为)为A18 B17 C16 D15 4为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如右图所示根据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为( )A300B360C420D4500.080.070.060.050.040.030.020.0154.5 56.5 58.5 60.5 62.5 64.5 66.5 68.5 70.5 72.5 74.5 76.5体重(kg)5将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( )ABCD6连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是( 9 )ABCD7以表示标准正态总体在区间()内取值的概率,若随机变量服从正态分布,则概率等于 (A)-(B) (C)(D)8已知直线(是非零常数)与圆有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有( )A60条B66条C72条D78条9设分别是椭圆()的左、右焦点,若在其右准线上存在使线段的中垂线过点,则椭圆离心率的取值范围是( )ABCD10将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为()11设,则的值为()12如图,三行三列的方阵中有9个数,从中任取三个数,则至少有两个数位于同行或同列的概率是( ) )ABCD13若(2x3+)a的展开式中含有常数项,则最小的正整数n等于 .14某篮运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率(用数值作答15某校开设9门课程供学生选修,其中三门由于上课时间相同,至多选一门,学校规定每位同学选修4门,共有种不同选修方案。(用数值作答)16的展开式中常数项为 (用数字作答)17(本小题满分12分)甲、乙两名跳高运动员一次试跳米高度成功的概率分别是,且每次试跳成功与否相互之间没有影响,求:()甲试跳三次,第三次才成功的概率;()甲、乙两人在第一次试跳中至少有一人成功的概率;()甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率18(本小题满分12分)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:分组频数合计(I)在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;(II)估计纤度落在中的概率及纤度小于的概率是多少?(III)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是)作为代表据此,估计纤度的期望19(本小题满分12分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响(I)任选1名下岗人员,求该人参加过培训的概率;(II)任选3名下岗人员,求这3人中至少有2人参加过培养的概率 20(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为,(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望21(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为123450.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元表示经销一件该商品的利润()求事件:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率;()求的分布列及期望22(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:“取出的2件产品中至多有1件是二等品”的概率(1)求从该批产品中任取1件是二等品的概率;(2)若该批产品共100件,从中任意抽取2件,表示取出的2件产品中二等品的件数,求的分布列卷1答案1如果的展开式中含有非零常数项,则正整数的最小值为(1)356102若a为实数,-I,则a等于(A)(B)-(C)2(D)-23图3是某汽车维修公司的维修点环形分布图,公司在年初分配给A、 B、C、D四个维修点某种配件各50件在使用前发现需将A、B、C、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在 相邻维修点之间进行那么要完成上述调整,最少的调动件次(件配件从一个维修点调整到相邻维修点的调动件次为)为A18 B17 C16 D15 B4为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如右图所示根据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为( 6 )A300B360C420D4500.080.070.060.050.040.030.020.0154.5 56.5 58.5 60.5 62.5 64.5 66.5 68.5 70.5 72.5 74.5 76.5体重(kg)5将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( 7 )ABCD6连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是( 9 )ABCD7以表示标准正态总体在区间()内取值的概率,若随机变量服从正态分布,则概率等于 (A)-(B) (C)(D)8已知直线(是非零常数)与圆有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有( 10D )A60条B66条C72条D78条9设分别是椭圆()的左、右焦点,若在其右准线上存在使线段的中垂线过点,则椭圆离心率的取值范围是( 9D )ABCD10将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为(10B?)11设,则的值为(5)12如图,三行三列的方阵中有9个数,从中任取三个数,则至少有两个数位于同行或同列的概率是( 12D) )ABCD13若(2x3+)a的展开式中含有常数项,则最小的正整数n等于 .14某篮运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率14(用数值作答15某校开设9门课程供学生选修,其中三门由于上课时间相同,至多选一门,学校规定每位同学选修4门,共有种不同选修方案。(用数值作答)16的展开式中常数项为 13 (用数字作答)17(本小题满分12分)甲、乙两名跳高运动员一次试跳米高度成功的概率分别是,且每次试跳成功与否相互之间没有影响,求:()甲试跳三次,第三次才成功的概率;()甲、乙两人在第一次试跳中至少有一人成功的概率;()甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率18(本小题满分12分)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:分组频数合计(I)在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;(II)估计纤度落在中的概率及纤度小于的概率是多少?(III)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是)作为代表据此,估计纤度的期望本小题主要考查频率分布直方图、概率、期望等概念和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力解:()分组频数频率4样本数据频率/组距1.301.341.381.421.461.501.540.04250.25300.30290.29100.1020.02合计1001.00()纤度落在中的概率约为,纤度小于1.40的概率约为()总体数据的期望约为19(本小题满分12分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响(I)任选1名下岗人员,求该人参加过培训的概率;(II)任选3名下岗人员,求这3人中至少有2人参加过培养的概率 解:任选1名下岗人员,记“该人参加过财会培训”为事件,“该人参加过计算机培训”为事件,由题设知,事件与相互独立,且,(I)解法一:任选1名下岗人员,该人没有参加过培训的概率是所以该人参加过培训的概率是解法二:任选1名下岗人员,该人只参加过一项培训的概率是该人参加过两项培训的概率是所以该人参加过培训的概率是(II)解法一:任选3名下岗人员,3人中只有2人参加过培训的概率是3人都参加过培训的概率是所以3人中至少有2人参加过培训的概率是解法二:任选3名下岗人员,3人中只有1人参加过培训的概率是3人都没有参加过培训的概率是所以3人中至少有2人参加过培训的概率是20(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为,(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望解:分别记甲、乙、丙经第一次烧制后合格为事件,(1)设表示第一次烧制后恰好有一件合格,则(2)解法一:因为每件工艺品经过两次烧制后合格的概率均为,所以,故解法二:分别记甲、乙、丙经过两次烧制后合格为事件,则,所以,于是,21(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为123450.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元表示经销一件该商品的利润()求事件:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率;()求的分布列及期望(18)解:()由表示事件“购买该商品的3位顾客中至少有1位采用1期付款”知表示事件“购买该商品的3位顾客中无人采用1期付款”,()的可能取值为元,元,元,的分布列为(元)22(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:“取出的2件产品中至多有1件是二等品”的概率(1)求从该批产品中任取1件是二等品的概率;(2)若该批产品共100件,从中任意抽取2件,表示取出的2件产品中二等品的件数,求的分布列解:(1)记表示事件“取出的2件产品中无二等品”,表示事件“取出的2件产品中恰有1件二等品”则互斥,且,故 于是解得(舍去)(2)的可能取值为若该批产品共100件,由(1)知其二等品有件,故所以的分布列为012卷21复数等于( ) ABCD2如果的展开式中含有非零常数项,则正整数的最小值为() 106533设随机变量服从标准正态分布,已知,则=( ) A0.025B0.050C0.950D0.9754根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图2)从图中可以看出,该水文观测点平均至少一百年才遇到一次的洪水的最低水位是( )0.5%1%2%水位(米)30 31 32 3348 49 50 51图2 A48米B49米C50米 D51米4已知展开式中,各项系数的和与其各项二项式系数的和之比为,则等于() 5甲、乙、丙位同学选修课程,从门课程中,甲选修门,乙、丙各选修门,则不同的选修方案共有() 种种种种6从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A40种B60种C100种D120种7在复平面内,复数z=对应的点位于(A)第一象限(B)第二象限(C)第在象限(D)第四象限8用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有 (A)288个(B)240个(C)144个(D)126个9一袋中装有大小相同,编号分别为的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为() 10.设集合S=A0,A1,A2,A3,在S上定义运算为:A1A=Ab,其中k为I+j被4除的余数,I,j=0,1,2,3.满足关系式=(xx)A2=A0的x(xS)的个数为A.4 B.3 C.2 D.11211如果一个凸多面体是棱锥,那么这个凸多面体的所有顶点所确定的直线共有 条.这些直线中共有对异面直线,则 (答案用数字或的解析式表示)12从某自动包装机包装的食盐中,随机抽取袋,测得各袋的质量分别为(单位:):492496494495498497501502504496497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g501.5g之间的概率约为_13.安排6名支教老师去3所学校任教,每校至多2人,则不同的分配方案共有 种.(用数字作答)14如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种(用数字作答)15某书店有11种杂志,2元1本的8种,1元1本的3种,小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是 (用数字作答)16随机变量的分布列如下:其中成等差数列,若,则的值是 17(本小题满分12分)栽培甲、乙两种果树,先要培育成苗,然后再进行移栽已知甲、乙两种果树成苗的概率分别为,移栽后成活的概率分别为,(1)求甲、乙两种果树至少有一种果树成苗的概率;(2)求恰好有一种果树能培育成苗且移栽成活的概率18(本小题满分12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元()求3位购买该商品的顾客中至少有1位采用一次性付款的概率;()求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率19.(本小题满分12分)某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为、,且各轮问题能否正确回答互不影响.()求该选手被淘汰的概率;()该选手在选拔中回答问题的个数记为,求随机变量的分布列与数数期望.(注:本小题结果可用分数表示)20 (本小题满分13分)在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以表示笼内还剩下的果蝇的只数.理()写出的分布列(不要求写出计算过程);()求数学期望E;()求概率P(E).21(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.()若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率;()若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数的分布列及期望,并求该商家拒收这批产品的概率. 22(本小题满分12分)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球现从甲、乙两个盒内各任取2个球()求取出的4个球均为黑球的概率;()求取出的4个球中恰有1个红球的概率;()设为取出的4个球中红球的个数,求的分布列和数学期望卷2答案1复数等于( 1C ) ABCD2如果的展开式中含有非零常数项,则正整数的最小值为(3) 106533设随机变量服从标准正态分布,已知,则=( 5C ) A0.025B0.050C0.950D0.9754根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图2)从图中可以看出,该水文观测点平均至少一百年才遇到一次的洪水的最低水位是(7C )0.5%1%2%水位(米)30 31 32 3348 49 50 51图2 A48米B49米C50米 D51米4已知展开式中,各项系数的和与其各项二项式系数的和之比为,则等于(4C) 5甲、乙、丙位同学选修课程,从门课程中,甲选修门,乙、丙各选修门,则不同的选修方案共有(5) 种种种种6从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( 10B ) A40种B60种C100种D120种7在复平面内,复数z=对应的点位于(A)第一象限(B)第二象限(C)第在象限(D)第四象限18用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有 (A)288个(B)240个(C)144个(D)126个(10) B ABCD,9一袋中装有大小相同,编号分别为的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为(6) 10.设集合S=A0,A1,A2,A3,在S上定义运算为:A1A=Ab,其中k为I+j被4除的余数,I,j=0,1,2,3.满足关系式=(xx)A2=A0的x(xS)的个数为A.4 B.3 C.2 D.11211如果一个凸多面体是棱锥,那么这个凸多面体的所有顶点所确定的直线共有 条.这些直线中共有对异面直线,则 (答案用数字或的解析式表示)12从某自动包装机包装的食盐中,随机抽取袋,测得各袋的质量分别为(单位:):492496494495498497501502504496497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g501.5g之间的概率约为_13_13.安排6名支教老师去3所学校任教,每校至多2人,则不同的分配方案共有 种.(用数字作答)14如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有390种(用数字作答)15某书店有11种杂志,2元1本的8种,1元1本的3种,小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是 (用数字作答)16随机变量的分布列如下:其中成等差数列,若,则的值是 17(本小题满分12分)栽培甲、乙两种果树,先要培育成苗,然后再进行移栽已知甲、乙两种果树成苗的概率分别为,移栽后成活的概率分别为,(1)求甲、乙两种果树至少有一种果树成苗的概率;(2)求恰好有一种果树能培育成苗且移栽成活的概率解:分别记甲、乙两种果树成苗为事件,;分别记甲、乙两种果树苗移栽成活为事件,(1)甲、乙两种果树至少有一种成苗的概率为;(2)解法一:分别记两种果树培育成苗且移栽成活为事件,则,恰好有一种果树培育成苗且移栽成活的概率为解法二:恰好有一种果树栽培成活的概率为18(本小题满分12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元()求3位购买该商品的顾客中至少有1位采用一次性付款的概率;()求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率解:()记表示事件:“位顾客中至少位采用一次性付款”,则表示事件:“位顾客中无人采用一次性付款”,()记表示事件:“位顾客每人购买件该商品,商场获得利润不超过元”表示事件:“购买该商品的位顾客中无人采用分期付款”表示事件:“购买该商品的位顾客中恰有位采用分期付款”则,19.(本小题满分12分)某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为、,且各轮问题能否正确回答互不影响.()求该选手被淘汰的概率;()该选手在选拔中回答问题的个数记为,求随机变量的分布列与数数期望.(注:本小题结果可用分数表示)解法一:()记“该选手能正确回答第轮的问题”的事件为,则,该选手被淘汰的概率()的可能值为,的分布列为123解法二:()记“该选手能正确回答第轮的问题”的事件为,则,该选手被淘汰的概率()同解法一20 (本小题满分13分)在医学生物学试验中,经常以果蝇作为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025湖南师范大学附属小学第二轮非事业编制教师招聘4人模拟试卷及答案详解(典优)
- 2025年广东省建设项目合同范本
- 2025嘉兴市鑫茂物资调剂市场有限责任公司招聘1人考前自测高频考点模拟试题及答案详解(新)
- 2025授权书之房屋买卖委托合同样本
- 2025年合肥长丰县北城世纪城第一小学招聘教师考前自测高频考点模拟试题(含答案详解)
- 2025湖北鄂州华容区城市建设投资有限公司面向社会招聘4人模拟试卷带答案详解
- 2025广西-东盟经济技术开发区社会福利院拟聘人员模拟试卷及答案详解(考点梳理)
- 2025兴义市采购担保合同
- 2025广东韶关市始兴县青年就业见习基地招募见习人员4人考前自测高频考点模拟试题及答案详解(有一套)
- 2025北京市海淀区育鹰小学教师招聘5人考前自测高频考点模拟试题带答案详解
- DB44-T 2474-2024 自然教育标识设置指引
- 2022年高考全国Ⅰ卷语文真题及参考答案-全国Ⅰ卷
- 2024年成都温江兴蓉西城市运营集团有限公司招聘笔试冲刺题(带答案解析)
- 天津市普通高中学业水平考试英语词汇表
- Wagstaff低液位自动控制铸造-课件
- 锂电池安全培训课件
- 妇科护士进修汇报护理课件
- 2024年中国人寿养老保险股份有限公司招聘笔试参考题库含答案解析
- 消防验收竣工报告
- 投标增值服务承诺书
- 法院调令申请书范本
评论
0/150
提交评论