四川省岳池县第一中学高中数学《§2.3 等差数列的前n项和》学案 新人教A版必修5_第1页
四川省岳池县第一中学高中数学《§2.3 等差数列的前n项和》学案 新人教A版必修5_第2页
四川省岳池县第一中学高中数学《§2.3 等差数列的前n项和》学案 新人教A版必修5_第3页
四川省岳池县第一中学高中数学《§2.3 等差数列的前n项和》学案 新人教A版必修5_第4页
四川省岳池县第一中学高中数学《§2.3 等差数列的前n项和》学案 新人教A版必修5_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.3 等差数列的前n项和(1)学习目标 1. 掌握等差数列前n项和公式及其获取思路;2. 会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题.教学重点等差数列n项和公式的理解、推导及应教学难点灵活应用等差数列前n项公式解决一些简单的有关问题学习过程一、课前准备(预习教材P42 P44,找出疑惑之处)复习1:什么是等差数列?等差数列的通项公式是什么?复习2:等差数列有哪些性质?二、新课导学 学习探究探究:等差数列的前n项和公式 问题:1. 计算1+2+100=?2. 如何求1+2+n=?新知:数列的前n项的和:一般地,称 为数列的前n项的和,用表示,即 反思: 如何求首项为,第n项为的等差数列的前n项的和? 如何求首项为,公差为d的等差数列的前n项的和?试试:根据下列各题中的条件,求相应的等差数列的前n项和. .小结:1. 用,必须具备三个条件: .2. 用,必须已知三个条件: . 典型例题例1 2000年11月14日教育部下发了关于在中小学实施“校校通”工程的统治. 某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间,在全市中小学建成不同标准的校园网.据测算,2001年该市用于“校校通”工程的经费为500万元. 为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元. 那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?小结:解实际问题的注意: 从问题中提取有用的信息,构建等差数列模型; 写这个等差数列的首项和公差,并根据首项和公差选择前n项和公式进行求解.例2 已知一个等差数列前10项的和是310,前20项的和是1220. 由这些条件能确定这个等差数列的前n项和的公式吗?变式:等差数列中,已知,求n. 小结:等差数列前n项和公式就是一个关于的方程,已知几个量,通过解方程,得出其余的未知量. 动手试试练1.一个凸多边形内角成等差数列,其中最小的内角为120,公差为5,那么这个多边形的边数n为( ).A. 12 B. 16 C. 9 D. 16或9三、总结提升 学习小结1. 等差数列前n项和公式的两种形式;2. 两个公式适用条件,并能灵活运用;3. 等差数列中的“知三求二”问题,即:已知等差数列之五个量中任意的三个,列方程组可以求出其余的两个. 知识拓展1. 若数列的前n项的和(A,A、B是与n无关的常数),则数列是等差数列.2. 已知数列是公差为d的等差数列,Sn是其前n项和,设也成等差数列,公差为. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 在等差数列中,那么( ).A. 12 B. 24 C. 36 D. 482. 在50和350之间,所有末位数字是1的整数之和是().A5880B5684C4877D45663. 已知等差数列的前4项和为21,末4项和为67,前n项和为286,则项数n为( )A. 24 B. 26 C. 27 D. 284. 在等差数列中,则 .5. 在等差数列中,则 . 课后作业 1. 数列是等差数列,公差为3,11,前和14,求和.2. 在小于100的正整数中共有多少个数被3除余2? 这些数的和是多少?2.3 等差数列的前n项和(2)学习目标1. 进一步熟练掌握等差数列的通项公式和前n项和公式; 2. 了解等差数列的一些性质,并会用它们解决一些相关问题;3. 会利用等差数列通项公式与前 n项和的公式研究的最大(小)值.教学重点熟练掌握等差数列的求和公式教学难点灵活应用求和公式解决问题学习过程一、课前准备(预习教材P45 P46,找出疑惑之处)复习1:等差数列中, 15, 公差d3,求.复习2:等差数列中,已知,求和.二、新课导学 学习探究问题:如果一个数列的前n项和为,其中p、q、r为常数,且,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少? 典型例题例1已知数列的前n项为,求这个数列的通项公式. 这个数列是等差数列吗?如果是,它的首项与公差分别是什么?变式:已知数列的前n项为,求这个数列的通项公式. 小结:数列通项和前n项和关系为=,由此可由求.例2 已知等差数列的前n项和为,求使得最大的序号n的值.变式:等差数列中, 15, 公差d3, 求数列的前n项和的最小值. 小结:等差数列前项和的最大(小)值的求法.(1)利用: 当0,d0,前n项和有最大值,可由0,且0,求得n的值;当0,前n项和有最小值,可由0,且0,求得n的值(2)利用:由,利用二次函数配方法求得最大(小)值时n的值. 动手试试练1. 已知,求数列的通项.练2. 有两个等差数列2,6,10,190及2,8,14,200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,求这个新数列的各项之和. 三、总结提升 学习小结1. 数列通项和前n项和关系;2. 等差数列前项和最大(小)值的两种求法. 知识拓展等差数列奇数项与偶数项的性质如下:1若项数为偶数2n,则;2若项数为奇数2n1,则;. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 下列数列是等差数列的是( ).A. B. C. D. 2. 等差数列中,已知,那么( ).A. 3 B. 4 C. 6 D. 12 3. 等差数列的前m项和为30,前2m项和为100,则它的前3m项和为( ). A. 70 B. 130 C. 140 D. 17

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论